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Our concern is the problem of efficiently determining the data complexity of answering 
queries mediated by description logic ontologies and constructing their optimal rewritings 
to standard database queries. Originated in ontology-based data access and datalog 
optimisation, this problem is known to be computationally very complex in general, with 
no explicit syntactic characterisations available. In this article, aiming to understand the 
fundamental roots of this difficulty, we strip the problem to the bare bones and focus 
on Boolean conjunctive queries mediated by a simple covering axiom stating that one 
class is covered by the union of two other classes. We show that, on the one hand, these 
rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture 
many features and difficulties of the general case. For example, answering d-sirups is 
�

p
2 -complete for combined complexity and can be in AC

0 or L-, NL-, P-, or coNP-
complete for data complexity (with the problem of recognising FO-rewritability of d-sirups 
being 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some 
only double-exponential-size positive existential FO-rewritings and single-exponential-size 
nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and 
necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d-sirups. Our 
main technical result is a complete and transparent syntactic AC

0/NL/P/coNP tetrachotomy 
of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. 
To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-
hardness of answering non-Horn ontology-mediated queries as well as showing that they 
can be answered in NL.
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1. Introduction

1.1. The ultimate question

The general research problem we are concerned with in this article can be formulated as follows: for any given ontology-
mediated query (OMQ, for short) Q = (O, q) with a description logic ontology O and a conjunctive query q,

(data complexity) determine the computational complexity of answering Q over any input data instance A under the open 
world semantics and, if possible,

(rewritability) reduce the task of finding certain answers to Q over any input A to the task of evaluating a conventional 
database query Q ′ with optimal data complexity directly over A (the query Q ′ is then called a rewriting of the OMQ 
Q ).

Ontology-based data access Answering queries mediated by a description logic (DL) ontology has been known as an im-
portant reasoning problem in knowledge representation since the early 1990s [1]. The proliferation of DLs and their 
applications [2,3], the development of the (DL-underpinned) Web Ontology Language OWL,1 and especially the paradigm 
of ontology-based data access (OBDA) [4–6] (proposed in the mid 2000s and recently rebranded to the virtual knowledge 
graph (VKG) paradigm [7]), have made theory and practice of answering ontology-mediated queries (OMQs) a hot research 
area lying at the crossroads of Knowledge Representation and Reasoning, Semantic Technologies and the Semantic Web, 
Knowledge Graphs, and Database Theory and Technologies.

In a nutshell, the idea underlying OBDA is as follows. The users of an OBDA system (such as Mastro2 or Ontop3) may 
assume that the data they want to query is given in the form of a directed graph whose nodes are labelled with concepts 
(unary predicates or classes) and whose edges are labelled with roles (binary predicates or properties)—even though, in 
reality, the data can be physically stored in different and possibly heterogeneous data sources—hence the moniker VKG. 
The concept and role labels come from an ontology, designed by a domain expert, and should be familiar to the intended 
users who, on the other hand, do not have to know anything about the real data sources. Apart from providing a user-
friendly vocabulary for queries and a high-level conceptual view of the data, an important role of the ontology is to enrich 
possibly incomplete data with background knowledge. To illustrate, imagine that we are interested in the life of ‘scientists’ 
and would like to satisfy our curiosity by querying the data available on the Web (it may come from the universities’ 
databases, publishing companies, personal web pages, social networks, etc.). An ontology O about scientists, provided by 
an OBDA system, might contain the following ‘axioms’ (given, for readability, both as DL concept inclusions and first-order 
sentences):

BritishScientist � ∃affiliatedWith.UniversityInUK (1)

∀x [BritishScientist(x)→∃y (affiliatedWith(x, y)∧ UniversityInUK(y))]
∃worksOnProject � Scientist (2)

∀x [∃y worksOnProject(x, y)→ Scientist(x)]
Scientist 	 ∃affiliatedWith.UniversityInUK � BritishScientist (3)

∀x [(Scientist(x)∧ ∃y (affiliatedWith(x, y)∧ UniversityInUK(y)))→ BritishScientist(x)]
BritishScientist � Brexiteer 
 Remainer (4)

∀x [BritishScientist(x)→ (Brexiteer(x)∨ Remainer(x))]
Now, to find, for example, British scientists, we could execute a simple OMQ Q (x) = (O, q(x)) with the query

q(x) = BritishScientist(x)

mediated by the ontology O. The OBDA system is expected to return the members of the concept BritishScientist that are 
extracted from the original datasets by ‘mappings’ (database queries connecting the data with the ontology vocabulary and 
virtually populating its concepts and roles) and also deduced from the data and axioms in O such as (3). It is this latter 
reasoning task that makes OMQ answering non-trivial and potentially intractable both in practice and from the complexity-
theoretic point of view.

1 https://www.w3 .org /TR /owl2 -overview/.
2 https://www.obdasystems .com.
3 https://ontopic .biz.
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Uniform approach To ensure theoretical and practical tractability, the OBDA paradigm presupposes that the users’ OMQs 
are reformulated—or rewritten—by the OBDA system into conventional database queries over the original data sources, 
which have proved to be quite efficiently evaluated by the existing database management systems. Whether or not such 
a rewriting is possible and into which query language naturally depends on the OMQ in question. One way to uniformly
guarantee the desired rewritability is to delimit the language for OMQ ontologies and queries. Thus, the DL-Lite family 
of description logics [5] and the OWL 2 QL profile4 of OWL 2 were designed so as to guarantee rewritability of all OMQs 
with a DL-Lite ontology and a conjunctive query (CQ) into first-order (FO) queries, that is, essentially SQL queries [8]. In 
complexity-theoretic terms, FO-rewritability of an OMQ means that it can be answered in LogTime uniform AC

0, one of the 
smallest complexity classes [9]. In our example above, only axioms (1) and (2) are allowed by OWL 2 QL. Various dialects 
of tuple-generating dependencies (tgds), aka datalog± or existential rules, that admit FO-rewritability and extend OWL 2 QL
have also been identified; see, e.g., [10–13].

Any OMQ with an EL, OWL 2 EL or HornSHIQ ontology is datalog-rewritable [14–17], and so can be answered in
P—polynomial time in the size of data—using various datalog engines, say GraphDB,5 LogicBlox6 or RDFox.7 Axioms (1)–(3)
are admitted by the EL syntax. On the other hand, OMQs with an ALC (a notational variant of the multimodal logic
Kn [18]) ontology and a CQ are in general coNP-complete [1], and so often regarded as intractable and not suitable for 
OBDA, though they can be rewritten to disjunctive datalog [19–21] supported by systems such as DLV8 or clasp.9 For 
example, coNP-complete is the OMQ ({(4)}, q1) with the CQ

q1 = ∃w, x, y, z [Brexiteer(w)∧ hasCoAuthor(w, x)∧ Remainer(x)∧
hasCoAuthor(x, y)∧ Brexiteer(y)∧ hasCoAuthor(y, z)∧ Remainer(z)]

(see also the representation of q1 as a labelled graph below). It might be of interest to note that by making the role 
hasCoAuthor symmetric using, for example, the role inclusion axiom

hasCoAuthor � hasCoAuthor− (5)

∀x, y [hasCoAuthor(x, y)→ hasCoAuthor(y, x)]
we obtain the OMQ ({(4), (5)}, q1), which is rewritable to a symmetric datalog query, and so can be answered by a highly 
parallelisable algorithm in the complexity class L (logarithmic space).

For various reasons, many existing ontologies do not comply with the restrictions imposed by the standard languages for 
OBDA. Notable examples include the large-scale medical ontology SNOMED CT,10 which is mostly but not entirely in EL, and 
the oil and gas NPD FactPages11 ontology and the Subsurface Exploration Ontology [22], both of which fall outside OWL 2 QL
by a whisker, in particular because of covering axioms like (4) that are quite typical in conceptual modelling. One way to 
(partially) resolve this issue is to compute an approximation of a given ontology within the required ontology language, 
which is an interesting and challenging reasoning problem by itself; see, e.g., [23–26] and references therein. In practice, 
the non-complying axioms are often simply omitted from the ontology in the hope that not too many answers to OMQs will 
be lost. An attempt to figure out whether it was indeed the case for the OMQs with the Subsurface Exploration Ontology 
and geologists’ queries from [22] was the starting point of research that led to this article.

Non-uniform approach An ideal alternative to the uniform approach to OBDA discussed above would be to admit OMQs in 
a sufficiently expressive language and supply the OBDA system with an algorithm that recognises the data complexity of 
each given OMQ and rewrites it to a database query in the corresponding target language. For example, while answering 
the OMQ ({(4)}, q1) is coNP-complete, we shall see later on in this paper that ({(4)}, q2) with the same ontology and the 
CQ q2 shown in the picture below is P-complete and datalog-rewritable, ({(4)}, q3) is NL- (non-deterministic logarithmic 
space) complete and linear-datalog-rewritable, ({(4)}, q4) is L-complete and symmetric-datalog-rewritable, while ({(4)}, q5)

is in AC
0 and FO-rewritable. In the picture, F (u) stands for Brexiteer(u), T (u) for
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4 https://www.w3 .org /TR /owl2 -profiles/.
5 https://graphdb .ontotext .com.
6 https://developer.logicblox .com.
7 https://www.oxfordsemantic .tech.
8 http://www.dlvsystem .com.
9 https://potassco .org /clasp/.

10 https://bioportal .bioontology.org /ontologies /SNOMEDCT.
11 https://factpages .npd .no.
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Remainer(u), R(u, v) for hasCoAuthor(u, v), S(u, v) for hasBoss(x, y), and all of the variables w , x, y, z are assumed to be 
existentially quantified. Another example is the experiments with the NPD FactPages and Subsurface Exploration ontologies 
used for testing OBDA in industry [15,22,27]. Although the ontologies contain covering axioms of the form A � B1 
 · · · 
 Bn

not allowed in OWL 2 QL, one can show that the concrete queries provided by the end-users do not ‘feel’ those dangerous 
axioms and are FO-rewritable. Note also the experiments in [28] showing that rewriting non-Horn OMQs to datalog can 
significantly improve the efficiency of answering by means of existing engines.

Is it possible to efficiently recognise the data complexity of answering any given OMQ and construct its optimal rewrit-
ing? The database community has been investigating these questions in the context of datalog optimisation since the 1980s; 
see Section 1.3 for details and references. For various families of DLs, a complexity-theoretic analysis of the (data complex-
ity) problem was launched by Lutz and Wolter [29] and Bienvenu et al. [30]. Incidentally, the latter discovered a close 
connection with another important and rapidly growing area of Computer Science and AI: constraint satisfaction problems 
(CSPs), for which a P/NP-dichotomy, conjectured by Feder and Vardi [31], has recently been established [32,33]. We briefly 
survey the current state of the art in Section 1.3 below. Here, it suffices to say that recognising FO-rewritability is ExpTime-
complete for OMQs with a ‘lightweight’ EL ontology [34,35] and 2NExpTime-complete for OMQs with a ‘full-fledged’ ALC
ontology [36]. In either case, the problem seems to be too complex for a universal algorithmic solution, although experi-
ments in [37] demonstrated that many real-life atomic OMQs in EL can be efficiently rewritten to non-recursive datalog by 
the ExpTime algorithm.

A more practical take on the (rewritability) problem, started by Motik [19], exploits the datalog connection mentioned 
above. In a nutshell, the idea is as follows. OMQs with a Horn DL ontology are rewritten to datalog queries, which could 
further be treated by the datalog optimisation techniques for removing or linearising recursion or partial FO-rewriting 
algorithms such as [38]. Non-Horn OMQs are transformed to (possibly exponential-size [20]) disjunctive datalog queries to 
which partial datalog rewriting algorithms such as the ones in [28] can be applied. It is to be emphasised, however, that 
tractable datalog optimisation and rewriting techniques cannot be complete.

In this article, we propose to approach the ultimate question from a different, bottom-up direction. In order to see 
the wood for the trees, we isolate some major sources of difficulty with (data complexity) and (rewritability) within a 
syntactically simple yet highly non-trivial class of OMQs. Apart from unearthing the fundamental roots of high complexity, 
this will allow us to obtain explicit syntactic rewritability conditions and even complete classifications of OMQs according 
to their data complexity and rewritability type. (Note that similar approaches were taken for analysing datalog programs 
and CSPs; see Sections 1.2 and 1.3.)

1.2. Our contribution

We investigate the (data complexity) and (rewritability) problems for OMQs Q of a very simple form:

(d-sirup) Q = (covA, q), where covA = { A � F 
 T } and q is a Boolean CQ with unary predicates F , T and arbitrary binary 
predicates.

Our ultimate aim is to understand how the interplay between the covering axiom A � F 
T and the structure of q determines 
the complexity and rewritability properties of Q . By regarding q and data instances as labelled directed graphs (like in the 
picture above), we can formulate the problem of answering Q in plain graph-theoretic terms:

Instance: any labelled directed graph (digraph, for short) A;
Problem: decide whether each digraph obtained by labelling every A-node in A with either F or T contains a homomor-

phic image of q (in which case the certain answer to Q over A is ‘yes’).

By definition (see, e.g., [39]), this can be done in coNP as q is fixed, and so the existence of a homomorphism from q to any 
labelling of A can be checked in polynomial time by inspecting all possible |A||q|-many maps from q to A. In practice, we 
could try to solve this problem using, say, a resolution-based prover (see Example 2) or by evaluating the disjunctive datalog 
program {(6), (7)} below over A, both of which would require finding proofs of exponential size in general (see Theorem 3). 
The (data complexity) and (rewritability) problems ask whether there exists a more efficient algorithmic solution for the 
given Q in principle and whether it can be realised as a standard (linear, symmetric) datalog or FO-query evaluated over 
the input graphs A.

The OMQ Q = (covA, q) is equivalent to the monadic disjunctive datalog query

T (x)∨ F (x)← A(x) (6)

G ← q (7)
4
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with a nullary goal predicate G . In the 1980s, trying to understand boundedness (FO-rewritability) and linearisability (linear-
datalog-rewritability) of datalog queries, the database community introduced the notion of sirup—standing for ‘datalog query 
with a single recursive rule’ [40–42]—which was thought to be crucial for understanding datalog recursion and optimising 
datalog programs [43, Problem 4.2.10]. Our OMQs Q or disjunctive datalog queries ({(6), (7)}, G)—which henceforth are 
referred to as (monadic) disjunctive sirups or simply d-sirups—play the same fundamental role for understanding OMQs with 
expressive ontologies and monadic disjunctive datalog queries.

Looking pretty trivial syntactically, d-sirups form a very sophisticated class of OMQs. For example, deciding FO-
rewritability of d-sirups (even those of them that are equivalent to monadic datalog sirups) turns out to be 2ExpTime-
hard [44]—as complex as deciding program boundedness of arbitrary monadic datalog programs [45,46]. Interestingly, one 
of the sources of this unexpectedly high complexity is ‘twin’ F T -labels of nodes in CQs like q5 above. We can eliminate 
this source by imposing the standard disjointness constraint F 	 T �⊥ (or ⊥ ← F (x), T (x) in datalog parlance), often used in 
ontologies and conceptual modelling. Thus, we arrive to dd-sirups of the form

(dd-sirup) Q = (cov⊥A , q), where cov⊥A = { A � F 
 T , F 	 T �⊥ }.

The complexity and rewritability of both d- and dd-sirups only depend on the structure of the CQs q, which suggests a 
research programme of classifying (d)d-sirups by the type of the graph underlying q—directed path, tree, their undirected 
variants, etc.—and characterising the data complexity and rewritability of OMQs in the resulting classes. Thus, in the context 
of datalog sirups, Afrati and Papadimitriou [47] gave a complete characterisation of binary chain sirups that are computable 
in NC, and so parallelisable. Actually, according to [47], Kanellakis and Papadimitriou ‘have investigated the case of unary 
sirups, and have made progress towards a complete characterization’. Unfortunately, that work has never been published.12

(As shown later on in this article and [44], unary datalog sirups are closely connected to d-sirups.)
The main achievement of this article is a complete characterisation of dd-sirups with a path-shaped CQ (like q1–q3 and 

q5 above). Syntactically, the obtained characterisation, a tetrachotomy, is transparent and easily checkable: for any dd-sirup 
Q = (cov⊥A , q) with a path-shaped CQ q,

(AC0) Q is FO-rewritable and can be answered in AC
0 iff q contains an F T -twin or has no F -nodes or no T -nodes;

otherwise,

(NL) Q is linear-datalog-rewritable and answering it is NL-complete if q is a ‘periodic’ CQ with a single F -node or a single 
T -node;

(P) Q is datalog-rewritable and answering it is P-complete if q is an ‘aperiodic’ CQ with a single F - or T -node;
(CONP) answering Q is coNP-complete if q has at least two F -nodes and at least two T -nodes.

(Assuming that NL �= P �= coNP, the three ‘if’ above can be replaced by ‘iff’.) From the technical point of view, however, 
to establish this first complete syntactic characterisation of OMQs with disjunctive axioms, we require an adaptation of 
known methods from description logic [34,35] and datalog [45,46] as well as developing novel techniques for proving P-
and especially coNP-hardness. As a (cruel) exercise, the reader might be tempted to consider the dd-sirup with q1 above 
and then permute the F s and T s in it. The known techniques of encoding NP-complete problems such as 2+2CNF or graph 
3-colouring in terms of OMQ answering are not applicable in this case as cov⊥A is not capable of any reasoning bar binary
case distinction and q1 has only one binary relation. (To compare, the first coNP-hard d-sirup found by Schaerf [1] has five 
roles that are used to encode clauses and their literals in 2+2-CNFs.) An even harder problem is to find a unified construction 
for arbitrary path-shaped CQs as different types of them require different treatment.

Structure of the article In the remainder of this section, we briefly review the related work. Section 2 contains the necessary 
background definitions. It also shows (by reduction of the mutilated chessboard problem [48,49]) that answering d-sirups 
using resolution-based provers requires finding proofs of exponential size in general.

In Section 3, we make an initial scan of the ‘battleground’ and obtain a few relatively simple complexity and rewritability 
results for arbitrary (not necessarily path-shaped) d- and dd-sirups. First, we show (by reduction of ∀∃SAT) that answering 
(d)d-sirups is �p

2 -complete for combined complexity (in the size of q and A), that is, harder than answering DL-Lite and EL
OMQs [50,15] (unless NP =�

p
2 , and so NP = PSpace). This result is an improvement on �p

2 -hardness of answering OMQs 
with a Schema .org ontology [51], which are more expressive than (d)d-sirups. Then we start classifying d-sirups in terms 
of occurrences of F and T in the CQs q. Those without occurrences of a solitary F (like q5) or a solitary T are readily 
seen to be FO-rewritable. All other twinless d-sirups are shown to be L-hard, with certain symmetric d-sirups with one 
solitary F and one solitary T being rewritable to symmetric datalog, and so L-complete. D-sirups with a single solitary 
F or a single solitary T (and possibly with twins) are shown to be rewritable to monadic datalog queries (which also 

12 https://en .wikipedia .org /wiki /Paris _Kanellakis.
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follows from [28]). This observation allows us to use datalog expansions [52] (called cactuses in our context) and automata-
theoretic techniques [45] to analyse FO- and linear-datalog-rewritability of the corresponding d-sirups. In [44], we used the 
criterion of FO-rewritability in terms of cactuses to prove that deciding FO-rewritability of d-sirups with a single solitary 
F or T as well as that of monadic datalog sirups is 2ExpTime-complete. Here, we show that nonrecursive datalog, positive 
existential and UCQ-rewritings of such d-sirups are of at least single-, double- and triple-exponential size in the worst case, 
respectively.

As far as we are aware, there is no known semantic or syntactic criterion distinguishing between datalog programs in NL

and P, though Lutz and Sabellek [34,35] gave a nice semantic characterisation of OMQs with an EL ontology. In Section 4, 
we combine their ideas with the automata-theoretic technique of Cosmadakis et al. [45] and prove a useful graph-theoretic 
sufficient condition for d-sirups to be linear-datalog-rewritable (and so in NL). Note that every d-sirup whose CQ q is a 
ditree with a single solitary F (or T ) at the root can be rewritten to an atomic OMQ in EL, to which the ExpTime-complete 
trichotomy of [34] is applicable.

Finally, in Sections 5 and 6, we obtain the tetrachotomy of the path-shaped dd-sirups discussed above. Items (AC0)
and (NL) and the upper bound in (P) follow from the previous sections. By far the hardest part of the tetrachotomy is 
establishing P- and coNP-hardness. To prove the former, we assemble AND- and OR-gates from copies of a given aperiodic 
CQ and then use those gates to construct ABoxes that ‘compute’ arbitrary monotone Boolean circuits, which is known to be 
P-complete. The structure of the gates and circuits is uniform for each type of aperiodicity. In the proof of coNP-hardness, 
building 3CNFs from copies of a given CQ q is not uniform as various parts of the construction subtly depend on the 
order of and the distances between the F - and T -nodes in q. We are not aware of any even remotely similar methods in 
the literature, and believe that our novel ‘bike technique’ can be used for showing coNP-hardness of many other classes 
of OMQs. (It might be of interest to note that the coNP-hardness result in our tetrachotomy implies completeness of the 
datalog rewriting algorithm from [28] for path-shaped dd-sirups.)

In Section 7, we summarise the obtained results and formulate a few open problems for future research.
An extended abstract [53] with some of the results from this article has been presented at the 17th International Con-

ference on Principles of Knowledge Representation and Reasoning.

1.3. Related work

There have been two big waves of research related to (data complexity) and (rewritability) of ontology-mediated 
queries. The first one started in the mid 1980s, when the database community was working on optimisation and paralleli-
sation of datalog programs, which was hoped to be done by ‘intelligent compilers’ (see, e.g., [54,40,55–59], surveys [43,60]
and references therein). One of the fundamental problems considered was to decide whether the depth of recursion re-
quired to evaluate a given datalog query could be bounded independently of the input data, which implies FO-rewritability 
of the datalog query. Boundedness was shown to be decidable in P for some classes of linear programs [61,54], NP-
complete for linear monadic and dyadic single rule programs [41], PSpace-complete for linear monadic programs [45,62], 
and 2ExpTime-complete for arbitrary monadic programs [45,46]; see also [63]. On the other hand, boundedness of linear 
datalog queries with binary predicates and of ternary linear datalog queries with a single recursive rule was proved to be 
undecidable [64,65] along with many other semantic properties of datalog programs including linearisability, being in L or 
being in NC [66]. The computational complexity of evaluating datalog sirups (of arbitrary arity) as well as their descriptive 
complexity were studied in [42].

The second wave was largely caused by the apparent success story of the DL-underpinned Web Ontology Language OWL 
and the OBDA paradigm, both in theory and practice. On the one hand, as we mentioned earlier, large families of DLs that 
guarantee FO-rewritability [5,67] (the DL-Lite-family) and datalog-rewritability [68–70] (the EL-family) and [14,20] (the 
Horn DL-family) were designed and investigated. Other types of rule-based languages with FO-rewritability have also been 
identified [71,72,11–13]. On the other hand, various methods for rewriting expressive OMQs to (disjunctive) datalog were 
suggested and implemented [16,17,73,28,74,75]. For example, the PAGOdA system combines the datalog reasoner RDFox and 
the OWL 2 reasoner HermiT [24]. A partial FO-rewriting algorithm for OMQs with an ELU ontology (allowing disjunction 
in EL) and an atomic query was suggested in [38], and a sound and complete but not necessarily terminating algorithm for 
OMQs with existential rules in [13].

Complexity-theoretic investigations of the (data complexity) and (rewritability) problems for DL OMQs fall into two 
categories depending on whether the ontology language is Horn or not. FO-rewritability of OMQs with an ontology given in 
a Horn DL between EL and HornSHIF was studied in [76,37,77], which provided semantic characterisations and estab-
lished, using automata-theoretic techniques, the complexity of deciding FO-rewritability ranging from ExpTime via NExpTime

to 2ExpTime. A complete characterisation of OMQs with an EL-ontology was obtained in [34,35], establishing an AC
0/NL/P 

data complexity trichotomy, which corresponds to an FO-/linear-datalog-/datalog-rewritability trichotomy. Deciding this 
trichotomy was shown to be ExpTime-complete. FO-rewritability of OMQs whose ontology is a set of (frontier-)guarded 
existential rules was investigated in [78].

For non-Horn ontology languages (allowing disjunctive axioms), a crucial step in understanding (data complexity) and
(rewritability) was the discovery in [30,36] of a connection between OMQs and non-uniform constraint satisfaction prob-
lems (CSPs) with a fixed template via MMSNP of [31]. It was used to show that deciding FO- and datalog-rewritability of 
OMQs with an ontology in any DL between ALC and SHIU and an atomic query is NExpTime-complete. The Feder-Vardi 
6
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dichotomy of CSPs [32,33] implies a P/coNP dichotomy of such OMQs, which is decidable in NExpTime. For monadic disjunc-
tive datalog and OMQs with an ALCI ontology (that is, ALC with inverse roles) and a CQ, deciding FO-rewritability rises 
and becomes 2NExpTime-complete; deciding whether such an OMQ is rewritable to monadic datalog is between 2NExpTime

and 3NExpTime [79,36]. Deciding FO-rewritability of OMQs with a Schema.org13 ontology (which admits inclusions between 
concept and role names as well as covering axioms for role domains and ranges) and a union of CQs (UCQ) is PSpace-hard; 
for acyclic UCQs, it can be done in NExpTime [51]. The data complexity and rewritability of OMQs whose ontology is given 
in the guarded fragment of first-order logic were considered in [80].

Despite the discovery of general algebraic, automata- and graph-theoretic and semantic characterisations of data com-
plexity and rewritability—which are usually very hard to check—there are very few explicit and easily checkable, possibly 
partial and applicable to limited OMQ families, sufficient and/or necessary conditions let alone complete classifications. 
Notable examples include (non-)linearisability conditions for chain datalog queries [81–83], the markability condition of 
datalog rewritability for disjunctive datalog programs and DL ontologies [28], and explicit NC/P-dichotomy of datalog chain 
sirups [47]. Classifications and dichotomies of various CSPs have been intensively investigated since Schaefer’s classification 
theorem [84]; see, e.g., [85–88,32,33] and references therein.

The natural idea [30] of translating OMQs to CSPs and then using the algorithms and techniques developed for checking 
their complexity looks hardly viable in general: for instance, as reported in [89], the Polyanna program [90], designed to 
check tractability of CSPs, failed to recognise coNP-hardness of the very simple OMQ obtained by swapping the last F - and 
T -labels in ({(4)}, q1) above because the CSP translation is unavoidably exponential.

2. Preliminaries

Using the standard description logic syntax and semantics [3], we consider ontology-mediated queries (OMQs) of the form 
Q = (O, q), where O is one of the two ontologies

covA = { A � F 
 T }, cov⊥A = { A � F 
 T , F 	 T �⊥}
and q is a Boolean conjunctive query (CQ, for short): an FO-sentence q = ∃xϕ(x), in which ϕ is a conjunction of (constant-
and function-free) atoms with variables from x. We often think of q as the set of its atoms. In the context of this paper, CQs 
may only contain two unary predicates F , T and arbitrary binary predicates. As in the previous section, OMQs Q = (covA, q)

are also called d-sirups and Q = (cov⊥A , q) dd-sirups.
Occasionally, we set A =�, in which case A � F 
 T becomes the total covering axiom F 
 T . It is to be noted that this 

axiom is domain dependent [8], and so regarded to be unsafe and disallowed in disjunctive datalog. In general, answering 
a d-sirup (covA, q) could be harder than answering the corresponding OMQ (cov�, q) as shown by Example 20. We only 
consider OMQs (cov�, q) in examples and when proving some lower complexity bounds.

An ABox (data instance), A, is a finite set of ground atoms with unary or binary predicates. We denote by ind(A) the 
set of constants (individuals) in A. An interpretation is a structure of the form I = (�I, ·I) with a domain �I �= ∅ and an 
interpretation function ·I such that aI ∈ �I for any constant a, �I = �I , ⊥I = ∅, PI ⊆ �I for any unary predicate P , 
and PI ⊆ �I ×�I for any binary P . The truth-relation I |= q, for any CQ q, is defined as usual in first-order logic. The 
interpretation I is a model of O if AI ⊆ FI ∪ TI and, for O = cov⊥A , also FI ∩ TI = ∅; it is a model of A if P (a) ∈A implies 
aI ∈ PI and P (a, b) ∈A implies (aI, bI) ∈ PI .

The certain answer to an OMQ Q = (O, q) over an ABox A is ‘yes’ if I |= q for all models I of O and A—in which case 
we write O, A |= q—and ‘no’ otherwise. A model of O and A is minimal if, for each undecided A-individual a, for which A(a)

is in A but neither F (a) nor T (a) is, exactly one of aI ∈ FI or aI ∈ TI holds. Clearly, O, A |= q iff I |= q for every minimal 
model I of O and A. So, from now on, ‘model’ always means ‘minimal model’.

It is often convenient to regard CQs, ABoxes and interpretations as digraphs with labelled edges and partially labelled 
nodes (by F , T in CQs and F , T , A in ABoxes and interpretations). It is straightforward to see that the truth-relation I |= q
is equivalent to the existence of a digraph homomorphism h : q → I preserving the labels of nodes and edges. Without 
loss of generality, we assume that CQs are connected as undirected graphs. This graph-theoretic perspective allows us to 
consider special classes of CQs such as tree-shaped CQs, in which the underlying undirected graph is a tree, or ditree-shaped
CQs, in which the underlying directed graph is a tree with all edges pointing away from the root, or dag-shaped CQs, which 
contain no directed cycles, etc. In particular, by a path-shaped CQ q (or path CQ, for short) we mean a (simple) directed 
path each of whose edges is labelled by one binary predicate. In other words, the binary atoms in q form a sequence 
R1(x1, x2), R2(x2, x3), . . . , Rn(xn, xn+1), where the xi are all pairwise distinct variables in q (the Ri are not necessarily dis-
tinct).

We illustrate the reasoning required to find the certain answer to a d-sirup over an ABox both on intuitive and formal 
levels. Our first example shows that, unsurprisingly, answering d-sirups can be done by a plain proof by cases.

Example 1. Consider the OMQ Q = (cov�, q) with A =� and the path CQ q shown in the picture below:

13 https://schema .org.
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T T F

S R

By analysing the four possible cases for a, b ∈ FI, TI in an arbitrary model I of cov� and the ABox below, one can 
readily see that each of them contains q as a subgraph, and so the certain answer to Q over this ABox is ‘yes’.

a

TT

b

T T

F

S
R

S

R
R

S

Indeed, if aI ∈ FI , then q is homomorphically embeddable into the S–R path on the left-hand side of I. Otherwise aI ∈ TI . 
If bI ∈ FI , then q is homomorphically embeddable into the bottom S–R path on the right-hand side of I. In the remaining 
case bI ∈ TI , there is a homomorphism from q into the S–R path on the top of I.

Such proofs can be given as formal resolution refutations (derivations of the empty clause) in clausal logic.

Example 2. The certain answer to a d-sirup Q = (covA, q) over an ABox A is ‘yes’ iff the following set SQ ,A of clauses is 
unsatisfiable:

SQ ,A =
{¬A(y)∨ F (y)∨ T (y),

∨
P (x)∈q

¬P (x)
} ∪ A.

(For a dd-sirup Q = (cov⊥A , q), the set SQ ,A also contains the clause ¬F (z) ∨¬T (z).) In other words, the certain answer to 
Q over A is ‘yes’ iff there is a derivation of the empty clause from SQ ,A in classical first-order resolution calculus [91]. 
By grounding SQ ,A , that is, by uniformly substituting individuals in ind(A) for the variables x, y and z in the first two 
clauses of SQ ,A , we obtain a set S̄Q ,A of essentially propositional clauses with |S̄Q ,A| polynomial in |A|. Again, the 
certain answer to Q over A is ‘yes’ iff there is a derivation of the empty clause from S̄Q ,A using propositional resolution. 
We now show that, in general, such derivations are of exponential size in |A|.

Theorem 3. There exist a CQ q and a sequence An, n > 0, of ABoxes such that |An| is polynomial in n and any resolution refutation of 
SQ ,An or S̄Q ,An , for Q = (covA, q), is of size 2�(n).

Proof. We show that the mutilated chessboard problem can be solved by answering a d-sirup Q over certain ABoxes An . 
The problem is as follows: given a chessboard of size 2n × 2n, for n > 0, with two white corner squares removed, prove 
that it cannot be covered by domino tiles (rectangles with two squares). This problem was encoded as a set of propositional 
clauses of size linear in n [48,49], any resolution proof of which is of size 2�(n) [48, Theorem 2.1]. We encode the same 
problem by the set SQ ,An , for some d-sirup Q = (covA, q) and ABox An . Since our encoding and the one in [48] are 
‘locally’ translatable to each other and in view of [49, Proposition 3.4]), any resolution refutation of SQ ,An or S̄Q ,An is also 
of size 2�(n) .

Our CQ q is shown on the left-hand side of Fig. 1. The mutilated 2n ×2n chessboard is turned to an ABox An by replacing 
each of its squares with the pattern shown in the middle of Fig. 1. The encodings of the different squares are connected via 
their four contacts, depicted as ◦-nodes. Each of these contacts is labelled by A or F , depending on whether it is in-between 
two squares, or at the boundary of the board; see the right-hand side of Fig. 1. All of the binary edges in q and An are 
assumed to be labelled by R . Labels w, x, y, z are just pointers and not parts of q or An .

We call a model I of covA and An covering if exactly one contact in the encoding of each square is in TI . Covering 
models are clearly in one-to-one correspondence with domino-coverings (with each contact being in TI iff it is between 
two squares covered by the same domino). We show that a model I of covA and An is covering iff I �|= q. This implies the 
correctness of our encoding: the 2n × 2n mutilated chessboard cannot be covered by dominos iff the answer to Q over An

is ‘yes’, that is, there exist resolution refutations of both SQ ,An and S̄Q ,An .
(⇒) If I is covering, then at least one of the four contacts of each square is not labelled by F . Thus, node x of q can 

be homomorphically mapped only to node w of the encoding of some square, and so y should be mapped to z. But then 
the two T -nodes in q should be mapped to two different contacts of the same square, contrary to the fact that in covering 
models only one such contact is labelled by T . Therefore, there is no q → I homomorphism. (⇐) If I is not covering 
because there is a square none of whose contacts is labelled by T , then by mapping x to z in the encoding of that square 
we can obtain a q→ I homomorphism. And if there is a square such that at least two of its contacts are labelled by T , we 
can obtain a q→ I homomorphism by mapping x to w and y to z. �
8
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Fig. 1. Encoding the mutilated chessboard problem as S(covA ,q),An .

Our concern in the remainder of this article is the combined and data complexity of deciding, for a given (d)d-sirup 
Q = (O, q) and an ABox A, whether O, A |= q. In the former case, both q and A are regarded as input; in the latter one, 
q is fixed. It should be clear that �p

2 = coNP
NP is an upper bound for the combined complexity of our problem, which 

amounts to checking that, for every model I of O and A, there exists a homomorphism q→ I, with the latter being NP-
complete. For data complexity, when q is fixed, checking the existence of a homomorphism q→ I can be done in P, and so 
the whole problem is in coNP.

We are also interested in various types of rewritability of (d)d-sirups. An OMQ Q = (O, q) is called FO-rewritable if there 
is an FO-sentence � such that O, A |= q iff � is true in A given as an FO-structure [9]. In terms of circuit complexity, 
FO-rewritability is equivalent to answering Q in logtime-uniform AC

0 [9].
Recall from, say [8], that a datalog program, �, is a finite set of rules of the form ∀x (γ0 ← γ1 ∧ · · · ∧ γm), where each γi

is a (constant- and function-free) atom Q (y) with y ⊆ x. As usual, we omit ∀x. The atom γ0 is the head of the rule, and 
γ1, . . . , γm its body. All of the variables in the head must occur in the body. The predicates in the heads of rules are called 
IDB predicates, the rest EDB predicates. The arity of � is the maximum arity of its IDB predicates; 1-ary � is called monadic. 
A datalog query in this article takes the form (�, G) with a 0-ary (goal) atom G . The answer to (�, G) over an ABox A is 
‘yes’ if G is true in the structure �(A) obtained by closing A under the rules in �, in which case we write �, A |= G . 
We call (�, G) a datalog-rewriting of an OMQ Q = (O, q) in case O, A |= q iff �, A |= G , for any ABox A containing EDB 
predicates of � only. If Q is datalog-rewritable, then it can be answered in P for data complexity [60].

If there is a rewriting of Q to a (�, G) with a linear program �, having at most one IDB predicate in the body of each of 
its rules, then Q can be answered in NL (non-deterministic logarithmic space). The NL upper bound also holds for datalog 
queries with a linear-stratified program, which is defined as follows. A stratified program [8] is a sequence � = (�0, . . . , �n)

of datalog programs, called the strata of �, such that each predicate in � can occur in the head of a rule only in one stratum 
�i and can occur in the body of a rule only in strata � j with j ≥ i. If, in addition, the body of each rule in � contains at 
most one occurrence of a head predicate from the same stratum, � is called linear-stratified. Every linear-stratified program 
can be converted to an equivalent linear datalog program [83], and so datalog queries with a linear-stratified program can 
be answered in NL for data complexity.

A linear program � is symmetric if, for any recursive rule I(x) ← J (y) ∧ E(z) in � (except the goal rules), where J is an 
IDB predicate and E(z) is the conjunction of the EDBs of the rule, its symmetric counterpart J (y) ← I(x) ∧ E(z) is also a 
rule in �. It is known (see, e.g., [92]) that symmetric programs can be evaluated in L (deterministic logarithmic space) for 
data complexity. Thus, if Q is rewritable to a symmetric datalog query, it can be answered in L.

The complexity classes we deal with in this article form the chain

AC
0 � L ⊆ NL ⊆ P ⊆ coNP ⊆ �

p
2

(whether any of the inclusions ⊆ is strict is a major open problem in complexity theory). The P/NP dichotomy for CSPs [32,
33] and the reductions from [30,36] imply that every (d)d-sirup is either in P or coNP-complete. However, as far as we 
know, at the moment there are no other established dichotomies for OMQs with disjunctive axioms. On the other hand, 
as mentioned above, OMQ answering in AC

0 is equivalent to FO-rewritability, but whether OMQ answering in L (NL or P) 
implies symmetric-datalog-rewritability (respectively, linear-datalog- or datalog-rewritability) also remains open.

3. Initial observations

In this section, we obtain a number of relatively simple complexity and rewritability results that are applicable to arbi-
trary (not necessarily path) d- and dd-sirups.
9
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3.1. Combined complexity

Our first result pushes to the limit [51, Theorem 5] according to which answering OMQs with a Schema .org ontology is 
�

p
2 -complete for combined complexity (the hardness proof of that theorem uses an ontology with an enumeration definition 

E = {0, 1} and additional concept names, i.e., unary predicates, none of which is available in our case).

Theorem 4. (i) Answering d-sirups (covA, q) and dd-sirups (cov⊥A , q) is �p
2 -complete for combined complexity.

(ii) Answering d- and dd-sirups with a tree-shaped CQ q is coNP-complete for combined complexity.

Proof. As mentioned in Section 2, deciding whether O, A |= q, given a (d)d-sirup Q = (O, q) and an ABox A, can be 
done by a coNP Turing machine (checking all models I of O and A) with an NP-oracle (checking the existence of a 
homomorphism h : q→ I); for tree-shaped q, a P-oracle is enough (see, e.g., [93] and further references therein). The lower 
bound in (ii) follows from Theorem 27.

For (i), we prove it by reduction of �p
2 -complete ∀∃3SAT [94]. We remind the reader that a propositional formula ψ(x, y)

with tuples x and y of propositional variables is a 3CNF if it is a conjunction of clauses of the form �1 ∨ �2 ∨ �3, where 
each �i is a literal (a propositional variable or a negation thereof). The decision problem ∀∃3SAT asks whether the fully 
quantified propositional formula ϕ = ∀x∃y ψ(x, y) is true, for any given 3CNF ψ . We may assume that each clause contains 
each variable at most once. Denote by qϕ the CQ that, for each clause c = �1 ∨ �2 ∨ �3 in ψ , contains atoms Rc

i (zc, uc
i ), 

i = 1, 2, 3, with uc
i = y if y ∈ y occurs in �i and uc

i = xc if x ∈ x occurs in �i ; in the latter case, qϕ also contains T (xc) if 
�i = x and F (xc) if �i =¬x. For example, clauses c1 = x1 ∨¬x2 ∨ y1 and c2 =¬y1 ∨ x2 ∨ y2 contribute the following atoms 
to qϕ :

T
xc1

1

zc1

F
xc1

2

y1Rc1
1

Rc1
2

Rc1
3

zc2

y2

T
xc2

2

Rc2
1

Rc2
3

Rc2
2

For O = covA , the ABox Aϕ is defined as follows. For x ∈ x, we take individuals a∗x and a◦x and, for y ∈ y, individuals bF
y

and bT
y . Aϕ contains the atoms A(a∗x), F (a◦x), T (a◦x), for x ∈ x. For each c = �1 ∨ �2 ∨ �3, we define a set Ec of triples of 

the above individuals: (e1, e2, e3) ∈ Ec iff (i) for i = 1, 2, 3, ei ∈ {a∗x , a◦x} whenever x ∈ x occurs in �i , (ii) for i = 1, 2, 3, ei ∈
{bF

y , bT
y } whenever y ∈ y occurs in �i , and (iii) there is i ∈ {1, 2, 3} such that either ei = a∗x , or ei = bν

y and the assignment 
y = ν makes �i true. Now, for any c and (e1, e2, e3) in Ec , we take a fresh individual dc

(e1,e2,e3)—the centre of the pair (
c, (e1, e2, e3)

)
—and add three atoms Rc

i (d
c
(e1,e2,e3)

, ei), i = 1, 2, 3, to Aϕ . To illustrate, for c1 = x1 ∨ ¬x2 ∨ y1, the set Ec1

contains all triples of the form (aμ1
x1 , aμ2

x2 , bν
y1

) except (a◦x1
, a◦x2

, bF
y1

) and gives the following fragment of Aϕ :

dc1

(a∗x1
,a∗x2

,bF
y1

) dc1

(a◦x1
,a∗x2

,bF
y1

)
dc1

(a∗x1
,a◦x2

,bF
y1

)

dc1

(a∗x1
,a◦x2

,bT
y1

)
dc1

(a◦x1
,a◦x2

,bT
y1

)
dc1

(a∗x1
,a∗x2

,bT
y1

)
dc1

(a◦x1
,a∗x2

,bT
y1

)

a∗x1

A
a◦x1

F T
a∗x2

A
a◦x2

F T

bF
y1

bT
y1

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

Rc1
1

Rc1
2

Rc1
3

For O = cov⊥A , we take aF
x and aT

x instead of each a◦x , add the atoms F (aF
x ), T (aT

x ) instead of F (a◦x), T (a◦x), and replace item 
(i) in the definition of Ec with (i)′ for i = 1, 2, 3, ei ∈ {a∗x , aF

x , aT
x } whenever x ∈ x occurs in �i .

The number of atoms in Aϕ is polynomial in the size of ϕ .
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Claim 4.1. Suppose a : x→{F , T } is any assignment and

Aa
ϕ = Aϕ ∪ { T (a∗x) | a(x)= T , x ∈ x } ∪ { F (a∗x) | a(x)= F , x ∈ x }.

There exists an assignment b : y →{F , T } that makes ψ(a(x), b(y)) true iff Aa
ϕ |= qϕ .

Proof. (⇒) Suppose b is such that ψ(a(x), b(y)) is true. We need to show that there is a homomorphism h : qϕ →Aa
ϕ .

Case covA : For any clause c = �1 ∨ �2 ∨ �3 in ψ and for any i = 1, 2, 3, we define ec
i as follows. We let (i) ec

i = a∗x if x ∈ x

occurs in �i and a makes �i true, (ii) ec
i = a◦x if x ∈ x occurs in �i and a makes �i false, and (iii) ec

i = bb(y)
y if y ∈ y occurs in 

�i . As ψ(a(x), b(y)) is true, (ec
1, e

c
2, e

c
3) is in Ec . Then we define a map h by taking h(zc) to be the centre of 

(
c, (ec

1, e
c
2, e

c
3)

)
and h(uc

i ) = ec
i . It follows from the construction that h is well-defined and a homomorphism from qϕ to Aϕ with respect to 

the binary atoms. We show that it preserves the unary atoms as well. Indeed, for each c and each x ∈ x occurring in some 
literal �i in c, there are two cases: (1) If xc is labelled by T in qϕ , then �i = x. So if a makes �i true, then ec

i = a∗x is labelled 
by T in Aa

ϕ . And if a makes �i false, then ec
i = a◦x is labelled by both T and F in Aa

ϕ . (2) If xc is labelled by F in qϕ , then 
�i =¬x. So if a makes �i true, then ec

i = a∗x is labelled by F in Aa
ϕ . And if a makes �i false, then ec

i = a◦x is labelled by both 
T and F in Aa

ϕ .

Case cov⊥A : In the definition of ec
i , we replace (ii) with (ii)′ ec

i = aT
x if �i = x for some x ∈ x and a(x) = F , and (ii)′′

ec
i = aF

x if �i =¬x for some x ∈ x and a(x) = T . Again, we claim that h as defined above preserves the unary atoms. Indeed, 
for each c and for each x ∈ x occurring in some literal �i in c, there are two cases: (1) If xc is labelled by T in qϕ , then 
�i = x. So if a makes �i true, then ec

i = a∗x is labelled by T in Aa
ϕ . And if a makes �i false, then ec

i = aT
x is labelled by T in 

Aa
ϕ . (2) If xc is labelled by F in qϕ , then �i =¬x. So if a makes �i true, then ec

i = a∗x is labelled by F in Aa
ϕ . And if a makes 

�i false, then ec
i = aF

x is labelled by F in Aa
ϕ .

(⇐) Suppose h : qϕ →Aa
ϕ . Then, for any y ∈ y, we have h(y) = bν

y for some ν ∈ {F , T }. We then set b(y) = ν . We claim 
that ψ(a(x), b(y)) is true. Indeed, for every clause c = �1 ∨ �2 ∨ �3 in ψ , there is (e1, e2, e3) ∈ Ec such that h maps the 
‘contribution’ of c in qϕ onto the ‘star’ with centre dc

(e1,e2,e3) . If (e1, e2, e3) is in Ec because ei = a∗x , for some i ∈ {1, 2, 3}, 
x ∈ x, then the label of a∗x in Aa

ϕ is a(x). As h is a homomorphism, the label of xc in qϕ is also a(x), and so a makes c true 
by the definition of qϕ . And if (e1, e2, e3) is in Ec because ei = bb(y)

y , for some i ∈ {1, 2, 3}, y ∈ y with b(y) making �i true, 
then c is clearly true as well. �

Finally, we prove that ϕ is satisfiable iff O, Aϕ |= qϕ iff I |= qϕ for every model I of O and Aϕ . (⇒) Given I, define 
an assignment aI : x → {F , T } by taking aI(x) = T if a∗x ∈ TI and aI(x) = F if a∗x ∈ FI . Then I = AaI

ϕ , and so we are 
done by Claim 4.1. The implication (⇐) also follows from Claim 4.1, as Aa

ϕ is a model of O and Aϕ , for every assignment 
a : x→{F , T }. �
3.2. Data complexity: AC

0 and L

From now on, we focus on the data complexity of answering d-sirups (covA, q) and dd-sirups (cov⊥A , q). We start classi-
fying (d)d-sirups in terms of occurrences of F and T in the CQs q. Atoms F (x), T (x) ∈ q, for some variable x, are referred to 
as F T -twins in q. If q does not contain F T -twins, we call it twinless, and similarly for ABoxes. By a solitary F or T we mean 
a non-twin F - or, respectively, T -node.

Observe that answering (covA, q) is not easier than answering (cov⊥A , q): If a given ABox A contains F T -twins, then there 
is no model of cov⊥A and A, and so cov⊥A , A |= q. Also,

covA,A |= q iff cov⊥A ,A |= q, for any twinless ABoxA. (8)

If q contains F T -twins, then ∃x 
(

F (x) ∧ T (x)
)

is an FO-rewriting of (cov⊥A , q). In general, any rewriting of (covA, q) can be 
converted to a rewriting of (cov⊥A , q) into the same language. For example, if (�, G) is a (symmetric/linear) datalog rewriting 
of (covA, q), then (� ∪ {⊥ ← F (x), T (x)}, G) is a (symmetric/linear) datalog rewriting of (cov⊥A , q).

Aiming to identify FO-rewritable (d)d-sirups, we consider first those CQs that do not have a solitary F or a solitary T , 
calling them 0-CQs. Queries of this type are quite common, only asking about one of the covering predicates (as in ‘are there 
any undergraduate students who take symbolic AI courses?’ and ‘what about the postgraduate ones?’ provided that students 
are either undergraduate or postgraduate). The following theorem establishes a complexity dichotomy between 0-CQs and 
non-0-CQs, which contain occurrences of both covering predicates (as in ‘are there both undergraduate and postgraduate 
students in the College’s University Challenge team?’).

Theorem 5. (i) If q is a 0-CQ, then both (covA, q) and (cov⊥A , q) can be answered in AC
0 , with q being an FO-rewriting of each of 

them.
(ii) If q is twinless and contains at least one solitary F and at least one solitary T , then answering (cov�, q) and (cov⊥�, q), and so 

(covA, q) and (cov⊥, q) is L-hard.
A

11
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Proof. (i) Let O be one of covA or cov⊥A . We show that O, A |= q iff A |= q, and so q is an FO-rewriting of (O, q). (⇒)

Suppose A �|= q and q has no solitary F (the other case is similar). Let A′ be the result of adding a label F to every 
undecided A-node in A. Clearly, A′ is a model of O and A with A′ �|= q. (⇐) is trivial.

(ii) The proof is by an FO-reduction of the L-complete reachability problem for undirected graphs. Denote by q′ the CQ 
obtained by gluing together all the T -nodes and by gluing together all the F -nodes in q. Thus, q′ contains a single T -node, 
x, and a single F -node, y. Clearly, there is a homomorphism h : q→ q′ . Let q′′ = q′ \ {T (x), F (y)}.

Suppose G = (V , E) is a graph with s, t ∈ V . We regard G as a directed graph such that (u, v) ∈ E iff (v, u) ∈ E , for any 
u, v ∈ V . Construct a twinless ABox AG from G in the following way. Replace each edge e = (u, v) ∈ E by a copy q′′e of 
q′′ such that, in q′′e , node x is renamed to u, y to v, and all other nodes z to some fresh copy ze . Then AG comprises all 
such q′′e , for e ∈ E , as well as atoms T (s) and F (t). We show that there is a path from s to t in G (s →G t, in symbols) iff 
cov�, AG |= q iff cov⊥�, AG |= q (cf. (8)).

(⇒) Suppose there is a path s = v0, . . . , vn = t in G with ei = (vi, vi+1) ∈ E , for i < n. Consider an arbitrary model I of 
cov� and AG . Since I |= cov� , and T (s) and F (t) are in AG , we can find some i < n such that vi ∈ TI and vi+1 ∈ FI . As 
q′′ei

is an isomorphic copy of q′′ , we obtain I |= q′′ , and so I |= q.
(⇐) Suppose s �→G t. Then, by the construction, t is not reachable from s in AG (not even via an undirected path). 

Define a model I of cov⊥� and AG by taking TI to be the set of nodes in AG that are reachable from s (via an undirected 
path) and FI its complement. Clearly, no connected component of AG (as undirected graph) contains both TI- and FI

nodes. Since q is connected and contains at least one T and at least one F , it follows that I �|= q. �
As AC

0 � L and ∃x (F (x) ∧ T (x)) is an FO-rewriting of (cov⊥A , q) in which q contains a twin, Theorem 5 gives a sufficient 
and necessary criterion of FO-rewritability for dd-sirups:

Corollary 6. A dd-sirup Q = (cov⊥A , q) can be answered in AC
0 iff q is a 0-CQ or contains a twin.

Characterising FO-rewritable d-sirups with a CQ containing twins turns out to be a much harder problem, which will be 
discussed in Section 3.4.

Example 7. Meanwhile, the reader is invited to show that the d-sirups with the CQs below are FO-rewritable (see also 
Example 14). Note that each of these CQs is minimal, that is, not equivalent to any of its proper sub-CQs.

R S

F T T F F T

R R S S

T F T F

R R R R R

The lower bound result in Theorem 5 (ii) is complemented by the following simple sufficient condition. To formulate 
it, we require non-Boolean CQs q(x) that apart from existentially quantified variables may also contain free variables x
called answer or distinguished variables. Such a CQ q′(x, y) is symmetric if, for any ABox A and any a, b ∈ ind(A), we have 
A |= q′(a, b) iff A |= q′(b, a), where A is regarded as an FO-structure and |= is the usual first-order truth relation.

Theorem 8. Let O be one of covA or cov⊥A and let q be a Boolean CQ that is equivalent to

∃x, y
(

F (x)∧ q′1(x)∧ q′(x, y)∧ q′2(y)∧ T (y)
)
,

where (a) CQs q′1(x), q′(x, y) and q′2(y) do not contain solitary T and F , (b) q′(x, y) is symmetric, and (c) q′1(x) and q′2(y) are 
disjoint, with x and y being their only common variables with q′(x, y). Then (O, q) is rewritable to a symmetric datalog program, and 
so can be answered in L.

Proof. Suppose O = covA . We claim that O, A |= q iff there exist n ≥ 1 and v0, v1, . . . , vn ∈ ind(A) such that

(S1) F (v0), A(v1), . . . , A(vn−1), T (vn) ∈A,
(S2) A |= q′(vi, vi+1), for 0 ≤ i < n,
(S3) A |= q′1(vi), for 0 ≤ i < n,
(S4) A |= q′2(vi), for 1 ≤ i ≤ n.

Indeed, suppose there are v0, v1, . . . , vn ∈ ind(A) such that (S1)–(S4) hold. Consider any model I of O and A. By (S1), 
there is i < n with vi ∈ FI and vi+1 ∈ TI . Then (S2)–(S4) guarantee that I |= q. Conversely, suppose O, A |= q for some 
ABox A. For P ∈ {F , T , A}, let PA = {a ∈ ind(A) | P (a) ∈A}. Define inductively sets F j and F ′j , for j ≥ 0, by setting F0 = FA , 
F ′j = {b |A |= q′1(a) ∧q′(a, b) ∧q′2(b) for some a ∈ F j} and F j+1 = AA∩ F ′j . Let I be a model of O and A with FI =⋃∞

j=0 F j

and TI = TA ∪ (
AA \⋃∞

j=1 F j
)
. By our assumption, there is a homomorphism h : q→ I. Thus, h(x) ∈ F j and h(y) ∈ F ′ for 
j

12
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some j. Then h(y) ∈ TA , for otherwise h(y) ∈ F j+1, contrary to h(y) ∈ TI . Now, let vn−1 = h(x) and vn = h(y). If j = 0
then we are done with n = 1. If j > 0 then h(x) ∈ AA ∩ F ′j−1, and so there is vn−2 ∈ F j−1 such that A |= q′1(vn−2) ∧
q′(vn−2, vn−1) ∧ q′2(vn−1). By iterating this process, we obtain v0, v1, . . . , vn ∈ ind(A) as required.

It remains to observe that checking whether there are v0, v1, . . . , vn ∈ ind(A) such that (S1)–(S4) hold can be done by 
the following symmetric datalog program, in which B(x) = A(x) ∧ q′1(x) ∧ q′2(x):

G ← q

G ← F (x),q′1(x),q′(x, y), P (y)

P (x)← B(x),q′(x, y),q′2(y), T (y)

P (x)← B(x),q′(x, y), P (y), B(y)

where, by the symmetry of q′(x, y), the only recursive rule P (x) ← B(x), q′(x, y), P (y), B(y) is equivalent to its symmetric 
counterpart. If O = cov⊥A , we add the non-recursive rule G ← F (x), T (x) to the program. �
Example 9. By Theorems 8 and 5 (ii), the d-sirup (cov�, q) with q shown below is L-complete.

F T

R S S Q Q

3.3. Datalog rewritability of d-sirups with a 1-CQ

In this section, we introduce a technical tool that can be used to show datalog rewritability of (d)d-sirups whose CQ 
contains exactly one solitary F and at least one solitary T (or exactly one solitary T and at least one solitary F ). We refer 
to such CQs as 1-CQs. The tool is an adaptation of the known (disjunctive) datalog technique of expansions [54,45,52]. We 
use this tool to observe that every (d)d-sirup with a 1-CQ can be rewritten to a very simple datalog query—nearly a sirup in 
the sense of [40,41], and so can be answered in P. Note that a more general markability technique (tracing dependencies on 
disjunctive predicates in the program rules) for rewriting disjunctive datalog programs into datalog was developed in [28]. 
In Section 3.4, we also adapt the datalog expansion technique to characterise FO-rewritability of those datalog queries 
semantically.

Throughout this section, we assume that q is a 1-CQ, with F (x) and T (y1), . . . , T (yn) being all of the solitary occurrences 
of F and T in q. As before, we let O be one of covA or cov⊥A . For each dd-sirup Q = (O, q), we define a monadic (that is, 
having at most unary IDB predicates) datalog program �Q with nullary goal G and four rules

G ← F (x),q′, P (y1), . . . , P (yn) (9)

P (x)← T (x) (10)

P (x)← A(x),q′, P (y1), . . . , P (yn) (11)

G ← F (x), T (x) (12)

where q′ = q \ {F (x), T (y1), . . . , T (yn)} and P is a fresh predicate symbol that never occurs in ABoxes. Thus, the body of 
rule (11) is obtained from q by replacing F (x) with A(x) and each T (yi) with P (yi). If O = covA , rule (12) is omitted.

We also define by induction a class KQ of ABoxes called cactuses for Q . We start by setting KQ = {q}, regarding q as an 
ABox, and then recursively apply to KQ the following ‘budding’ rule:

(bud) if T (y) ∈ C ∈ KQ with solitary T (y), then we add to KQ the ABox obtained by replacing T (y) in C with the set 
(q \ {F (x)}) ∪ {A(x)}, in which x is renamed to y and all other variables are given fresh names.

It is straightforward to see by structural induction that

O,C |= q, for every C ∈ KQ . (13)

For C ∈ KQ , we refer to the copies s of (maximal subsets of) q comprising C as segments. The skeleton Cs of C is the ditree 
whose nodes are the segments s of C and edges (s, s′) mean that s′ was attached to s by budding. The depth of s in C is the 
number of edges on the branch from the root of Cs to s. The depth of C is the maximum depth of its segments.

Example 10. In the picture below, the cactus C2 is obtained by applying (bud) to the 1-CQ q twice. Its skeleton Cs
2 with 

three segments s0, s1, s2 is shown on the right-hand side of the picture.
13
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Theorem 11. For any (d)d-sirup Q = (O, q) with a 1-CQ q and any ABox A, the following conditions are equivalent:

(i) O, A |= q,
(ii) �Q , A |= G ,
(iii) there exists a homomorphism h : C →A, for some C ∈ KQ , or O = cov⊥A and A contains an F T -twin.

Proof. We show the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii) If O = cov⊥A and A contains a node labelled by both T and F , then G holds in the closure �Q (A) of A under 

�Q by rule (12). In any other case, we define a model I based on A by labelling each ‘undecided’ A-node a by T if P (a)

holds in �Q (A), and by F otherwise. As I is a model of O and A, there is a homomorphism h : q→ I. Then h(yi) ∈ TI , 
and so P

(
h(yi)

)
holds in �Q (A), for every i ≤ n (by rule (10) and the definition of I). We claim that h(x) is an F -node in 

�Q (A), and so G holds in �Q (A) by rule (9). Indeed, otherwise by h(x) ∈ FI and the definition of I, h(x) is an A-node 
but not a P -node in �Q (A), contrary to rule (11).

(ii) ⇒ (iii) Suppose O = covA or A does not contain a node labelled by both T and F . Then rule (12) is either not in 
�Q or not used. We define inductively (on the applications of rule (11) in the derivation of G) a cactus C ∈ KQ and a 
homomorphism h : C →A. To begin with, there are objects xa, ya

1, . . . , y
a
n for which rule (9) was triggered. Thus, xa is an 

F -node in �Q (A), and so it is an F -node in A. Take a function h0 : q→A that preserves binary predicates, with h0(x) = xa

and h0(yi) = ya
i for i ≤ n. If ya

i is a T -node in A for every i ≤ n, then h = h0 is the required homomorphism from q ∈ KQ to 
A. If ya

i is not a T -node in A, for some i, then ya
i is a P -node in �Q (A) obtained by rule (11), and so ya

i is an A-node in 
A. Also, there are xb = ya

i and yb
1, . . . , y

b
n such that rule (11) was triggered for xb, yb

1, . . . , y
b
n . Let C be the cactus obtained 

from q by budding at yi . We extend h0 to a function h1 : C →A such that it preserves binary predicates and h1(ysj ) = yb
j

for all T -nodes ysj of the new segment s. If yb
j is a T -node in A for every j ≤ n, then h = h1 is the required homomorphism 

from C ∈ KQ to A. Otherwise, we bud C again and repeat the above argument. As the derivation of G from A using �Q
is finite, sooner or later the procedure stops with a cactus and a homomorphism.

(iii) ⇒ (i) If O = cov⊥A and A contains a node labelled by both T and F , then O, A |= q obviously holds. Otherwise, take 
an arbitrary model I of O and A. We define a model I+ of O and C by ‘pulling back I’ via the homomorphism h: for 
every node x in C, x ∈ AI

+
iff h(x) ∈ AI . By (13), there is a homomorphism g : q→ I+ . Thus, the composition of g and h

is a q→ I homomorphism, as required. �
Corollary 12. Any (d)d-sirup (O, q) with a 1-CQ q is datalog-rewritable, and so can be answered in P.

As mentioned in the introduction, the problems of FO-rewritability (aka boundedness in the datalog literature) and 
linear-datalog-rewritability (aka linearisability) of datalog queries have been thoroughly investigated since the 1980s. In 
Sections 3.4 and 4, we discuss these questions for (d)d-sirups with a 1-CQ.

3.4. Deciding FO-rewritability of d- and dd-sirups with a 1-CQ

A key to understanding FO-rewritability of d- and dd-sirups with a 1-CQ is the following semantic criterion, which is 
well-known in the datalog setting; see, e.g., [54,45]:

Theorem 13. A (d)d-sirup Q = (O, q) with a 1-CQ q is FO-rewritable iff there exists a d < ω such that every cactus C ∈ KQ contains 
a homomorphic image of some cactus C− ∈ KQ of depth ≤ d, in which case a disjunction of the cactuses of depth ≤ d, regarded as 
Boolean CQs, is an FO-rewriting of Q .

Proof. (⇒) By [30, Proposition 5.9], Q has an FO-rewriting of the form q1 ∨ · · · ∨ qn , where the qi are CQs. Treating the 
qi as ABoxes, we obviously have O, qi |= q, and so, by Theorem 11, there is a homomorphism from some Ci ∈ KQ to qi . 
Now let d be the maximum of the depths of the Ci . Consider any C ∈ KQ of depth > d. Then there are homomorphisms 
Ci → qi → C, for some i, 1 ≤ i ≤ n, as required.

(⇐) Given d < ω, we take all of the cactuses C1, . . . , Cn of depth ≤ d (up to isomorphism). Now we consider each Ci
as a CQ. Then C1 ∨ · · · ∨ Cn is an FO-rewriting of Q . Indeed, if O, A |= q then there are homomorphisms Ci → C →A, for 
some C and i, again by Theorem 11. �
14
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Example 14. Let Q 1 be the d-sirup with the first CQ from Example 7. It is not hard to verify that every cactus for Q 1
contains a homomorphic image of this CQ, which is therefore an FO-rewriting of Q 1. Now, let Q 2 be the d-sirup with the 
second CQ from Example 7. Let Ck be the cactus obtained by applying (bud) k-times to the original cactus C0 (isomorphic 
to the given CQ). There are homomorphisms h : C1 → Ck , for k ≥ 2, and so Q 2 is rewritable to C0 ∨ C1.

As follows from [45], which considered arbitrary monadic datalog queries, checking the criterion of Theorem 13 can 
be done in 2ExpTime. A matching lower bound for monadic datalog queries with multiple recursive rules was estab-
lished in [46]. It has recently been shown that already deciding FO-rewritability of monadic datalog sirups of the form 
({(10), (11)}, P (x)) and also of d-sirups with a 1-CQ is 2ExpTime-hard [44]. Thus, we obtain:

Theorem 15 ([45,36,44]). Deciding FO-rewritability of d-sirups can be done in 2NExpTime. Deciding FO-rewritability of d-sirups with 
a 1-CQ is 2ExpTime-complete. It follows that deciding FO-rewritability of CQs mediated by a Schema .org or DL-Litebool [67] ontology 
can be done in 2NExpTime, and is 2ExpTime-hard.

The exact complexity of deciding FO-rewritability of d-sirups (2NExpTime or 2ExpTime) remains an open problem. An-
other important issue for OBDA and datalog optimisation is the succinctness problem for FO-rewritings [95,50]. It is not 
known if every FO-rewritable d-sirup has a polynomial-size FO-rewriting. However, we can show that this is not the case 
for the UCQ-, PE- and NDL-rewritings, which are standard in OBDA systems. We remind the reader (see [50] for details 
and further references) that a UCQ-rewriting takes the form of disjunction (union) of CQs, while a positive existential (PE) 
rewriting is built from atoms using ∃, ∧ and ∨ in an arbitrary way. A nonrecursive datalog (NDL) rewriting is a datalog query 
(�, G) such that the dependency digraph of � is acyclic, where a predicate P depends on a predicate P ′ in � if � has a 
clause with P in the head and P ′ in the body.

Theorem 16. There is a sequence of FO-rewritable d-sirups Q n = (covA, qn) of polynomial size in n > 0 such that any UCQ-, PE- and 
NDL-rewritings of Q n are of at least triple, double and single exponential size in n, respectively.

Proof. Consider an alternating Turing machine (ATM) Mn that works as follows on any input of length ≤ n. Its tape of size 
exponential in n is used as a counter from 0 to 22n

. The tape also has two extra cells a and b. Mn begins in a ∨-state by 
writing 0 and 1 in cell a in two alternative branches of the full computation space. Then Mn continues, in a ∧-state, by 
writing 0 and 1 in cell b in two alternative branches of the full computation space. If the bits in a and b in a given branch 
of the tree are distinct, Mn enters an accepting state. Otherwise, the counter is increased by 1 and the ATM repeats the 
previous two steps. If the counter exceeds 22n

, Mn enters a rejecting state. Thus, Mn rejects every input. Moreover, given 
any input w , every computation tree of Mn on w contains exactly one rejecting configuration, which is the leaf of a branch 
of length double-exponential in n.

We now use the ATMs Mn and any input w of length ≤ n to construct, as described in [44], polynomial-size 1-CQs qn . 
Then, by the (⇒) direction of [44, Lemma 4], the d-sirups Q n = (covA, qn) are FO-rewritable. On the other hand, one can 
show similarly to the proof of the (⇐) direction of [44, Lemma 4] that any computation tree of Mn on w corresponds to a 
cactus C ∈ KQ n

of triple-exponential size in n such that no smaller cactus is homomorphically embeddable to C. It follows 
that any UCQ-rewritings of Q n must be of at least triple-exponential size.

Any PE-rewritings of Q n are of at least double-exponential size. Indeed, given a PE-rewriting in prenex form of size s (the 
number of atoms in the formula), we can transform its matrix (the quantifier-free part) to DNF and obtain a UCQ rewriting 
of size ≤ s2s . So if s were sub-double-exponential, then the size of this UCQ-rewriting would be less than triple-exponential. 
A similar argument shows that it is impossible to obtain NDL-rewritings of subexponential size because otherwise we could 
transform them to sub-double-exponential PE-rewritings. �

The proof above does not provide us with any lower bound on the size of FO-rewritings because, by a result of Gurevich 
and Shelah [96], there is a potentially non-elementary blow-up in length from a homomorphism invariant FO-sentence 
to its shortest equivalent PE-sentence. We illustrate Theorem 16 by a simple example of an FO-rewritable d-sirup whose 
UCQ-rewritings are of at least double-exponential size.

Example 17. Consider the d-sirups Q n = (covA, qn), where qn , for n ≥ 2, is the 1-CQ depicted below, with the omitted labels 
on the edges being all R (and r, ai, bi, ci being pointers rather than labels in qn).

r F

a0

a1

T

a2

T
a3

F T

b0 b1 b2 b3c1c2cn−2cn−1cn

Q S Q

S

S . . .
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For any cactus C ∈ KQ n
and any node x in qn , let xC denote the copy of x in the root segment of C. Observe that C is of 

depth ≥ n iff C contains an R-path π that starts at rC and has ≥ n A-nodes, the first of which is either aC1 or aC2 . We show 
first that if the depth of C is ≥ n, then there is a homomorphism h : qn → C. Indeed, if the first A-node of π is aC1 , then 
we can define h by taking h(r) = rC , h(a0) = aC1 , h(ai) = aC3 for i = 1, 2, 3, h(b j) = bC2 for j = 0, 1, h(b j) = bC3 for j = 2, 3, 
c1, . . . , cn−1 are h-mapped to the next n −1 A-nodes in π , and h(cn) is the F T -node in the segment with root h(cn−1). (The 
case when the first A-node of π is aC2 is similar.) So Theorem 13 implies that Q n is FO-rewritable.

On the other hand, we claim that if C, C′ are cactuses of depths < n and there is a homomorphism h : C → C′ , then 
C = C′ . We show this by induction on the depth of C (which cannot exceed the depth of C′). Observe first that, for any x
in qn , we must have h(xC) = xC

′
: This holds for rC because the F T -node a3 has no S-successors, for aC0 because the depth 

of C′ is less than n, h(aC1 ) �= aC
′

2 because a2 has no Q -predecessor, h(aC1 ) �= aC
′

3 because a0 and a1 have a common successor, 
while a0 and a3 do not, we have a similar argument for h(aC2 ), and then we clearly have h(xC) = xC

′
for x = c1, . . . , cn−1, a3. 

It follows that if C = qn then C′ = qn must also hold, otherwise h does not preserve T . If the depth of C is > 0 then, for 
i = 1, 2, let si be the segment in Cs having aCi as its root node, and let C−i be the ‘subcactus’ of C whose skeleton is the 
subtree of Cs with root si . We define C′i

− from C′ similarly. An inspection of qn shows that we must have homomorphisms 
h1 : C−1 → C′1− and h2 : C−2 → C′2− . Thus, we have C−1 = C′1− and C−2 = C′2− by the induction hypothesis (IH). Therefore, 
C = C′ follows, and so the UCQ rewriting �n of Q n provided by Theorem 13 contains all different cactuses of depth < n, 
the number of which is 22O(n)

. It follows that any UCQ-rewritings �′n of Q n have at least 22O(n)
disjuncts. For otherwise, by 

the pigeonhole principle, there exist different disjuncts C and C′ in �n and C → D and C′ → D homomorphisms, for some 
disjunct D of �′n . On the other hand, there is a D → C′′ homomorphism, for some disjunct C ′′ in �n , and so, as shown 
above, C = C′ = C′′ , which is a contradiction.

One can readily transform �n to an equivalent PE-rewriting of exponential size at the expense of nested ∧ and ∨. But, 
by the proof of Theorem 16, there are no PE-rewritings of subexponential size. On the other hand, the datalog program 
{(9)–(11)} can be converted to an NDL-program describing cactuses of depth < n and containing O (n) rules.

Finding an explicit syntactic characterisation of FO-rewritable d-sirups turns out to be nearly as hard as characterising 
FO-rewritable OMQs in fully-fledged expressive DLs and monadic disjunctive datalog queries. Notice, however, that the 1-
CQs used in Example 17 and the construction of [44] (underlying Theorem 16) are quite involved dags with multiple edges 
and possibly multiple F T -twins. So one could hope that by restricting the shape of CQs and/or by disallowing F T -twins 
we would obtain less impenetrable yet practically useful classes of d-sirups. Indeed, for d-sirups Q whose 1-CQ is a ditree
with its unique solitary F -node as root, the program �Q can be reformulated as an EL-ontology, and so one can use the 
AC

0/NL/P trichotomy of [34,35], which is checkable in ExpTime.

Example 18. To illustrate, consider the 1-CQ q below:

F F T T

R S Q

We have covA, A |= q iff E, A |= ∃x B(x), where E is the EL TBox {F 	 Cq � B, T � P , A 	 Cq � P } with Cq = ∃R.(F 	 T 	
∃S.∃Q .P ) and the DL syntax illustrated in terms of first-order logic by (1)–(4) in Section 1.

Further, as shown in [44], any d-sirup with a ditree 1-CQ, not necessarily having an F -labelled root, is either FO-
rewritable or L-hard, and deciding this dichotomy is fixed-parameter tractable if we regard the number of solitary T -nodes 
as a parameter. Moreover, for dd-sirups with an arbitrary ditree CQ, there is an explicit syntactic trichotomy: each of them 
is either FO-rewritable or L-complete, or NL-hard. On the other hand, there is no readily available machinery for explicitly 
characterising NL-completeness, P- and coNP-hardness of (d)d-sirups (let alone more general types of OMQs). We are going 
to fill in this gap to some extent in the remainder of the article. To begin with, we combine some ideas from [45,34] to 
prove a general sufficient condition of linearisability for d-sirups with a 1-CQ.

4. Linear-datalog-rewritability of d- and dd-sirups with a 1-CQ

We require a few new definitions, assuming as before that O is one of covA or cov⊥A . First, we extend the class KQ of 
cactuses for any (d)d-sirup Q = (O, q) to a wider class K+Q by adding another inductive rule to its definition. We define K+Q
as the class of structures obtained from q by recursively applying (bud) and the following ‘pruning’ rule:

(prune) if C ∈ K
+
Q and O, C− |= q, where C− = C \ {T (y)}, for some solitary T (y) in C, then we add C− to K+Q .

If C− is obtaining from C by (prune), we define the skeleton (C−)s of C− to be Cs . We continue to call members of K+Q
cactuses. We write C′ ⊆ C to say that, when regarded as ABoxes (sets of atoms), the cactus C′ is (isomorphic to) a subset of 
16
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the cactus C. A cactus C ∈ K
+
Q is minimal if, for every C′ ∈ K

+
Q , C′ ⊆ C implies C′ = C. The class of minimal cactuses in K+Q

is denoted by Kmin
Q . It should be clear that (13) holds for Kmin

Q in place of KQ .

Example 19. Consider the d-sirup Q = (covA, q) with q shown on the left-hand side of the picture below (the R-labels on 
the edges are omitted). The cactus C1 is obtained by budding y1 in q, and C2 is obtained by budding y2 in C1.

F T

y1

T

y2

q

F A

y1

T

y2

T

T
C1

F A

y1

A

y2

T

T

T

T
C2

Let C−1 be the result of removing T (y2) from C1. Then covA, C−1 |= q, the pruned cactus C−1 is minimal, while C2 ⊃ C−1 is 
not. Based on this observation, one can show that the skeleton of each cactus in Kmin

Q has only one branch.

The branching number [34] of a rooted tree T is defined as follows. For any node u in T, we compute inductively its 
branching rank br(u) by taking br(u) = 0 if u is a leaf and, for a non-leaf u,

br(u)=
{

m+ 1, if u has≥ 2 children of branching rank m;

m, otherwise,
(14)

where m is the maximum of the branching ranks of u’s children. The branching number of T is the branching rank of its 
root node. (In other words, the branching number of T is b if the largest full binary tree that is a minor of T is of depth b.) 
The branching number of a cactus C ∈ K

+
Q is the branching number of Cs . We call Kmin

Q boundedly branching if there is some 
b < ω such that Kmin

Q contains a cactus with branching number b but no cactus of greater branching number. Otherwise, 
we call Kmin

Q unboundedly branching.

Example 20. The branching number of each cactus in Kmin
Q from Example 19 is 0; however, there are cactuses in KQ with 

an arbitrarily large branching number b < ω. As another instructive example, consider the 1-CQ q depicted on the left-hand 
side below. The cactus C2 for Q = (cov�, q) on the right-hand side, obtained by first budding y2 and then

F T

y1

T

y2

q

F T

y1

y2

y′1

T

T T

C2

y′1, can be pruned at y1 by removing T (y1) (since every node in a model of cov� is labelled by F or T ). Using this 
observation, one can show that every cactus in Kmin

Q has branching number ≤ 1. On the other hand, if Q = (covA, q), then 
Kmin

Q is unboundedly branching as follows from Theorems 21 and 26.

Theorem 21. Every (d)d-sirup Q = (O, q) with a 1-CQ q and boundedly branching Kmin
Q is linear-datalog-rewritable, and so can be 

answered in NL.

Proof. Similarly to [45], we represent cactus-like ABoxes as terms of a tree alphabet and construct a tree automaton AQ

such that (i) cactuses in Kmin
Q are accepted by AQ , and (ii) for every ABox A accepted by AQ , we have O, A |= q. Then, 

using ideas of [34], we show that if Kmin
Q is boundedly branching, then the automaton AQ can be transformed into a 

(monadic) linear-stratified datalog rewriting of Q . As shown in [83], such a rewriting can further be converted into a linear 
datalog rewriting (at the expense of increasing the arity of IDB predicates in the program).

We only consider the case O = covA leaving a similar proof for cov⊥A to the reader. As before, we assume that q is a 
1-CQ such that F (x) and T (y1), . . . , T (yn) are all of the solitary occurrences of F and T in q.
17
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F
x

T
y1

T
y2

1-CQ q

0-ary:

(F )

T T

(F )

T

(F )

T

(F )

1-ary:

(F )

A T

(F )

A

(F )

T A

(F )

A

2-ary:

symbols of �Q

(F )

A A

s1
(
s2,s3(s2)

)

s1

F

A A

s2

T T

s3

T A

s2

T T

Fig. 2. An example of a tree alphabet �Q and a cactus as a �Q -tree.

Recall from [97] that a tree alphabet is a finite set � of symbols, each of which is associated with a natural number, its 
arity. A �-tree is any ground term built up inductively, using the symbols of � as functions: 0-ary symbols in � are �-trees 
and, for any k-ary a in � and �-trees C1, . . . , Ck , the term a(C1, . . . , Ck) is a �-tree. The branching number of a �-tree is 
that of its parse tree. We define a tree alphabet �Q as follows. Consider cactus-like ABoxes that are built from q using
(bud) and (prune), with applications of the latter also allowed when covA, C− �|= q for the resulting ABox C− , and extend 
the notions of skeleton, branching number and segments to these in the natural way. The symbols of �Q are the segments 
s of such ABoxes, with the arity of s being the number of its budding nodes, and with the x-node of s being either labelled 
by F or not. Then each cactus in K+Q can be encoded by some �Q -tree; see Fig. 2 for an example. On the other hand, every 
�Q -tree represents some cactus-like ABox. So, with a slight abuse of terminology, from now on by a �Q -tree we mean 
either the corresponding term or ABox.

However, such an ABox C is not necessarily a cactus in K+Q for two possible reasons: either covA, C �|= q or C having F -
nodes in some ‘wrong’ segments (every cactus has a unique F -node, viz., the x-node of its root segment). We are interested 
in those �Q -trees C for which covA, C |= q. To capture them, we use tree automata [97]. A nondeterministic finite tree 
automaton (NTA) over a tree alphabet � is a quadruple A = (Q , Q f , �, �), where Q is a finite set of states, Q f ⊆ Q
is a set of final states, and � is a set of transitions of the form q1, . . . , qk ⇒a q, where k ≥ 1 is the arity of a ∈ � and 
q1, . . . , qk, q ∈ Q ; for symbols a of arity 0, we have initial transitions in � of the form ⇒a q. A run of A on a �-tree C is a 
labelling function r from the subterms of C to Q satisfying the following condition: for any subterm C− = a(C1, . . . , Ck) of 
C, there is a transition q1, . . . , qk ⇒a q in � such that r(C1) = q1, . . . , r(Ck) = qk and r(C−) = q (in which case we say that 
the transition is used in r). A �-tree C is accepted by A if there is a run of A on C that labels C with a final state. Let L(A)

be the set of all �-trees accepted by A. A set L of �-trees is called a regular tree language if L = L(A), for some NTA A over 
�.

Claim 21.1. L Q = {C | C is a �Q -tree with covA, C |= q} is a regular tree language.

Proof. We proceed via a series of steps. In the construction, we use Theorem 11 for describing L Q by means of the datalog 
program �Q = {(9), (10), (11)}. We extend the tree alphabet �Q to a tree alphabet �e

Q as follows. For each symbol s in 
�Q , we label some (possibly none) of the nodes in segment s by P . We call each resulting ‘segment’ se an extension of
s. (Each symbol in �Q might have several extensions, and each of them has the same arity as s.) Let �e

Q consist of all 
possible extensions of every s in �Q . We say that a �e

Q -tree Ce is an extension of a �Q -tree C if they have isomorphic 
tree structures, and each symbol se in Ce is an extension of the corresponding symbol s in C. For example, the closure 
�Q (C) of any �Q -tree C under �Q is an extension of C.

For any �e
Q -tree Ce , we write Ce |= G , for the goal predicate G of �Q , if there is a homomorphism from qe to Ce , 

where qe = q \ {T (y1), . . . , T (yn)} ∪ {P (y1), . . . , P (yn)}. We claim that each of the following is a regular tree language:

(a) the set of �e -trees Ce with Ce �=�Q (Ce);
Q
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(b) the set of �e
Q -trees Ce with Ce |= G ;

(c) the set of �Q -trees C that have some extension Ce with Ce =�Q (Ce) and Ce �|= G ;
(d) the set of �Q -trees C with �Q , C |= G .

Indeed, to show (a), we need an NTA ‘detecting a pattern’ in the ABox Ce falsifying one of rules (10)–(11) in �Q . Similarly, 
to show (b), we need an NTA ‘detecting a pattern’ in Ce corresponding to an application of rule (9) in �Q . Now, (c) 
follows from (a), (b) and the fact that regular tree languages are closed under taking complements, intersections and linear 
homomorphisms [97] (as the ‘forgetting’ function substituting s for each se is a linear tree homomorphism from �e

Q -trees 
to �Q -trees, mapping any extension Ce to C). To show (d), take the complement of (c), and observe that �Q , C |= G iff, 
for every extension Ce of C, whenever Ce =�Q (Ce) then Ce |= G .

Finally, it follows from (d) and Theorem 11 that L Q is a regular tree language. �
An NTA A = (Q , Q f , �, �) is linear-stratified if there is a function st : Q →ω such that, for any transition q1, . . . , qk ⇒a q

in �,

– st(qi) ≤ st(q), for every i, 1 ≤ i ≤ k, and
– there is at most one i such that 1 ≤ i ≤ k and st(qi) = st(q).

Claim 21.2. For any NTA A and any b < ω, there is a linear-stratified NTA As such that

{C ∈ L(A) | the branching number of C is≤ b} ⊆ L(As) ⊆ L(A). (15)

Proof. Suppose A = (Q , Q f , �, �). We define As = (Q s, Q s
f , �

s, �) as follows. First, set Q s = Q × {0, . . . , b} and Q f =
Q f × {0, . . . , b}. Then, for any transition of the form ⇒a q in �, we add the transition ⇒a (q, 0) to �s . For any transition 
q1, . . . , qk ⇒a q in � and any m ≤ b, we add to �s all transitions (q1, m1), . . . , (qk, mk) ⇒a (q, m) such that

– either m1, . . . , mk < m and mi =m j =m − 1, for some i �= j;
– or mi =m, for some i, and m j < m, for all j �= i.

As is linear-stratified as one can set st
(
(q, m)

)=m, for q ∈ Q , m ≤ b. To show (15), observe that L(As) ⊆ L(A) since from 
every run r of As on C we obtain a run of A on C by replacing each (q1, m1), . . . , (qk, mk) ⇒a (q, m) used in r with 
q1, . . . , qk ⇒a q. For the other inclusion, given a run r of A on some C with branching number ≤ b, we obtain a run of As

on C by labelling each subterm C− of C with state 
(
r(C−), b−

)
, where b− is the branching number of C− . �

We can now complete the proof of Theorem 21. Indeed, suppose that every cactus in Kmin
Q has branching number at 

most b < ω. By Claims 21.1 and 21.2, there is a linear-stratified NTA A = (Q , Q f , �, �Q ) such that

{C ∈ L Q | the branching number of C is at most b} ⊆ L(A) ⊆ L Q .

Using A, we construct a (monadic) linear-stratified program �A with goal predicate GA as follows. For every q ∈ Q , we 
introduce a fresh unary predicate Pq . For every final state q ∈ Q f , the program �A contains the rule

GA← Pq(x). (16)

For every transition q1, . . . , qk ⇒s q in �, where the budding nodes in the k-ary segment s are yi1 , . . . , yik , �A contains

Pq(x)← s, Pq1(yi1), . . . , Pqk (yik ). (17)

As A is linear-stratified, it is easy to see that the program �A is linear-stratified. We claim that (�A, GA) is a datalog-
rewriting of Q , that is, for any ABox A (without the Pq), we have �A, A |= GA iff covA, A |= q.

(⇐) By Theorem 11, there is a homomorphism h : C →A, for some C ∈ KQ . As C always contains some C′ ∈ Kmin
Q , we 

may assume that C ∈ Kmin
Q , and so C has branching number ≤ b. As covA, C |= q clearly holds for every C ∈ Kmin

Q , it follows 
that C ∈ L Q , and so C ∈ L(A). Let r be an accepting run of A on C. We construct a derivation of GA in �A(A) by induction 
on C as a �Q -tree, moving from leaves to the root. For every segment s in C, if the transition q1, . . . , qk ⇒s q is used in r
then we apply (17) with the substitution of h(z) for any node z in s. Also, if r(C) = q, for some final state q of A, then we 
apply (16) with the substitution h(xs0 ), where xs0 is the x-node of the root segment s0 in C. It follows that �A, A |= GA .

(⇒) By induction on a derivation of GA , we construct a �Q -tree B, an accepting run r of A on B, and a homomorphism 
f : B →A. To begin with, there is an object xa for which (16) was triggered for some q ∈ Q f . Then Pq(xa) was deduced by 
an application of (17) for some s. If this s is 0-ary, then s is a �Q -tree (of depth 0), the function r labelling s with q is an 
accepting run on s, and the substitution f0 used in (17) is a homomorphism from s to A. If s is k-ary, for some k > 0, then 
there are ya , . . . , ya for which (17) was triggered. For each j = 1, . . . , k, consider the rule
i1 ik
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Pq j (x)← s j, P
q j

1
(yi1), . . . , P

q j
k j

(yik j
)

by which Pq j (ya
i j
) was deduced. Take the ABox B built up by glueing the x node of each segment s j to the yi j node of 

s, extend r by labelling each s j with q j , and extend f0 to a B →A homomorphism by taking the substitutions used in 
the rules. Now, if every s j is 0-ary, then B is a �Q -tree and we are done. Otherwise, repeat the above procedure for the 
‘arguments’ of each s j of arity > 0. As the derivation of GA is finite, sooner or later the procedure stops, as required.

As B ∈ L(A) ⊆ L Q , by Theorem 11 there exists a homomorphism h : C → B, for some cactus C ∈ KQ . Then the compo-
sition of h and f is a homomorphism from C to A, and so covA, A |= q by Theorem 11, as required. �

We do not know if the sufficient condition in Theorem 21 of linear-datalog-rewritability of (d)d-sirups with a 1-CQ is 
also a necessary one. As follows from [34,35], this is so for ditree 1-CQs with root labelled by F ; see Example 18. We use 
Theorem 21 in the next section to show that answering path-shaped dd-sirups with a certain periodic structure can be 
done in NL.

5. AC0 / NL / P / CONP-tetrachotomy of dd-sirups with a path CQ

We now obtain the main result of this article: a complete syntactic classification of dd-sirups (cov⊥A , q) with a path-
shaped CQ q according to their data complexity and rewritability type. While the AC

0/NL part of this AC
0/NL/P/coNP-

tetrachotomy follows from our earlier results, proving P- and especially coNP-hardness turns out to be tough and requires 
the development of novel machinery.

From now on, we only consider path CQs q (whose digraph is path-shaped). Solitary F - and T -nodes will simply be 
called F - and T -nodes, respectively. We denote the first (root) node in q by bq and the last (leaf) node by eq . Given 
nodes x and y, we write x ≺ y to say that there is a directed path from x to y in q; as usual, x � y means x ≺ y or 
x = y. For x � y, the set [x, y] comprises those atoms in q whose variables are in the interval {z | x � z � y} and (x, y) =
[x, y] \ {T (x), F (x), T (y), F (y)}. For i = (x, y), we let |i| be the length of the path from x to y, and |q| = |(bq, eq)|.

We divide path CQs into three disjoint classes: the 0-CQs and the 1-CQs defined earlier, and the 2-CQs that contain at 
least two F -nodes and at least two T -nodes. As we saw in Section 3.2, dd-sirups (cov⊥A , q) with q containing F T -twins are 
always FO-rewritable. We split twinless 1-CQs further into periodic and aperiodic ones, only considering 1-CQs with a single 
F -node and at least one T -node (as the case with a single T -node and at least one F -node is symmetric). Given such a 
twinless 1-CQ q and natural numbers l, r with l + r ≥ 1, we write q= qlr to say that q has l-many T -nodes x−l ≺ · · · ≺ x−1
that ≺-precede its only F -node x0, and r-many T -nodes x1 ≺ · · · ≺ xr that ≺-succeed x0. For every i with −l ≤ i ≤ r+ 1, we 
define a set ri of binary atoms by taking ri = (xi−1, xi), where x−l−1 = bq and xr+1 = eq . Note that ri �= ∅ for −l < i < r+ 1, 
but r−l = ∅ if bq = x−l and rr+1 = ∅ if xr = eq .

q= qlr
bq

T

x−l

. . .
T

x−1

F

x0

T

x1

. . .
T

xr eq

r−l r0 r1 rr+1

Each ri determines a finite sequence 〈r i〉 of binary predicate symbols. We call q right-periodic if q = q0r and either r = 1
or 〈ri〉 = 〈r1〉 for all i = 1, . . . , r and 〈rr+1〉 = 〈r1〉∗λ for some (possibly empty) prefix λ of 〈r1〉. By taking a mirror image 
of this definition, we obtain the notion of left-periodic 1-CQ, in which case q = ql 0 and either l = 1 or 〈r−i〉 = 〈r0〉 for all 
i = 1, . . . , l − 1 and 〈r−l〉 = λ〈r0〉∗ for some (possibly empty) suffix λ of 〈r0〉. A twinless 1-CQ q is called periodic if it is 
either right- or left-periodic, and aperiodic otherwise.

Theorem 22 (tetrachotomy). Let Q be any d-sirup with a twinless path CQ q or any dd-sirup with a path CQ q. Then the following 
tetrachotomy holds (where the three ‘if’ can be replaced by ‘iff’ provided that NL �= P �= coNP):

(AC0) Q is FO-rewritable and can be answered in AC
0 iff q is a 0-CQ or contains an F T -twin; otherwise,

(NL) Q is linear-datalog-rewritable and answering it is NL-complete if q is a periodic 1-CQ;
(P) Q is datalog-rewritable and answering it is P-complete if q is an aperiodic 1-CQ;
(CONP) answering Q is coNP-complete if q is a 2-CQ.

The first item follows from Theorem 5 and the fact that AC
0 �= L. The upper bounds in the remaining three are given by 

Theorem 24, Corollary 12, and Theorem 4, respectively. The matching lower bounds are established by Theorems 23, 26 and 
27 to be proved below. We begin with the following criterion:

Theorem 23. If q is a twinless path 1-CQ, then answering (covA, q) and (cov⊥, q) is NL-hard.
A
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Proof. The proof is by an FO-reduction of the NL-complete reachability problem for directed acyclic graphs (dags). We 
assume that there exist a T -node x and an F -node y in q with x ≺ y (the other case is symmetric) and without any F - or 
T -nodes between them. Given a dag G = (V , E) with nodes s, t ∈ V , we construct a twinless ABox AG as follows. Replace 
each edge e = (u, v) ∈ E by a fresh copy qe of q such that node x in qe is renamed to u with T (u) replaced by A(u), and 
node y is renamed to v with F (v) replaced by A(v). Then AG comprises all such qe , for e ∈ E , as well as T (s) and F (t). We 
show that s →G t iff covA, AG |= q iff cov⊥A , AG |= q (cf. (8)).

(⇒) Suppose there is a path s = v0, . . . , vn = t in G with ei = (vi, vi+1) ∈ E , for i < n. Then, for any model I of covA and 
AG , there is some i < n such that vi ∈ TI and vi+1 ∈ FI . Thus, the isomorphism mapping from q to its copy qei is a q→ I
homomorphism, and so I |= q.

(⇐) Suppose s �G t. Define a model I of covA and AG by labelling with T the undecided A-nodes in AG that are 
reachable from s (via a directed path) and with F the remaining ones. By excluding all possible locations where the T -node 
x could be mapped, we see that there is no homomorphism h : q→ I. Indeed, suppose h(x) is in a copy qe for some edge 
e = (u, v) ∈ E . Then h(x) cannot precede u or succeed v in qe , otherwise there is not enough room in qe for the rest of q to 
be mapped. And h(x) cannot be between u and v either, as q is twinless and there are no T -nodes between x and y in q. If 
h(x) = u, then we exclude all options where the F -node y could be mapped: h(y) cannot succeed u in q(u′,u) for any edge 
(u′, u) because of the lack of room in q(u′,u) , and h(y) = v′ cannot hold in q(u,v′) for any edge (u, v′) ∈ E because such a v′
is labelled by T in I. For similar reasons, h(x) = v cannot happen either. �

A generalisation of this theorem to d-sirups with ditree-shaped 1-CQs possibly containing F T -twins has been proved 
in [44] using a much more involved construction; see also Example 25 below.

By Corollary 12, all (d)d-sirups with a 1-CQ are datalog-rewritable and can be answered in P. Our next task is to establish 
an NL/P dichotomy for d-sirups with a twinless path 1-CQ.

Theorem 24. If q is a periodic twinless path 1-CQ, then both (covA, q) and (cov⊥A , q) are linear-datalog-rewritable, and so can be 
answered in NL.

Proof. We use the notation above, and only consider the case when Q = (covA, q) and q = q0r is a right-periodic twinless 
path 1-CQ with a single F -node x0 and T -nodes x1, . . . , xr . We show that every cactus in Kmin

Q has branching number at 
most 1 and use Theorem 21. If r = 1, then the cactuses in Kmin

Q have branching number 0.

So suppose r ≥ 2 and C ∈ Kmin
Q . For nodes u, v in C, we write u ≺C v to say that there is a directed path from u to v in 

the (acyclic) digraph C. We call a node in C a T -copy if it is a copy of a T -node xi of q for some i = 1, . . . , r. There can be 
three kinds of T -copies: those that were budded while constructing C are labelled by A, those that were pruned have no 
label, and the rest are labelled by T . Observe first that

if some T -copy u is unlabelled in C, then there is no T -copy v such that u ≺C v and v is labelled by T . (18)

Indeed, consider any model I of covA and C in which all A-nodes u′ with u ≺C u′ are in TI . As covA, C |= q, there is a 
homomorphism h : q→ I. As x0 is an F -node in q and its copy xs0

0 in the root segment s0 of C is the only F -node in C, it 
follows from our assumption on I that u ⊀C h(x0). We show that u ⊀C h(xi), for any i ≤ r. Indeed, this is clear if h(x0) ⊀C u. 
So suppose h(x0) ≺C u ≺C h(xr). Then, either h(x0) = xs0

0 or h(x0) is a budded T -copy ≺C -preceding u. By q being right-
periodic, every T -copy on the path from h(x0) to h(xr) in C different from h(x0) must be labelled by T . However, this is not 
the case for u, which is a contradiction. As u ⊀C h(xi) for any i ≤ r, by using (bud) and (prune) we can construct a cactus 
C1 ∈ K

+
Q that is the same as C apart from all T -labelled T -copies u′ with u ≺C u′ being unlabelled. Then C1 ⊆ C, and so 

C ∈ Kmin
Q implies that C = C1, proving (18).

Next, consider any branch s0, . . . , sn−1, sn in the skeleton Cs of C such that there are no A-nodes in the segment sn−1

≺C-succeeding the A-labelled T -copy w that has been budded to obtain the leaf segment sn . Let π be the path in C from 
the root node of s0 to the leaf node of sn . We claim that

all T -copies in π are labelled by either T or A. (19)

Indeed, by (18), it is enough to show that all T -copies in sn are labelled by T . Suppose on the contrary that at least one 
of them is not. Let I be a model of covA and C where the A-node w is labelled by F . Then there is a homomorphism 
h : q → I such that h(xi) �= w for any i = 0, . . . , r. Thus, by using (bud) and (prune) we can construct a cactus C2 ∈ K

+
Q

that is the same as C apart from w in sn−1 not being budded but pruned (and so w is unlabelled in C2 and sn is not a 
segment in Cs

2). Then C2 ⊆ C but C2 �= C, contrary to C ∈ Kmin
Q .

Now (19) and q being right-periodic imply that, for any model I of covA and C, there is a homomorphism h : q → I
mapping x0 and (x0, eq) into π . Indeed, take h(x0) = z where z is the ≺C-last F -labelled A-node in π if there is such, and 
xs0

0 otherwise. By the definition of budding, the part of q ≺-preceding x0 can be mapped to I as well, possibly covering 
some parts of C not in π but in a child-segment of some of the si . Therefore, by using (bud) and (prune) we can construct a 
cactus C3 ∈ K

+ whose skeleton consists of the branch s0, . . . , sn and all other children of the segments si for i = 0, . . . , n −1, 
Q
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the T -copies that were labelled by A and budded further in C in some of these children are unlabelled in C3, and all other 
T -copies are the same in C3 and C. Then C3 ⊆ C and the branching number of C3 is at most 1. As C ∈ Kmin

Q , C = C3
follows. �

One can generalise the proof of Theorem 24 to various path 1-CQs with F T -twins. Here are some examples.

Example 25. We invite the reader to show that answering the d-sirups with the following 1-CQs is NL-complete:

F F T F T T T F F T F T T T T

T F T F T T F T F T F T F F T T T

We next show that answering any d-sirup with twinless path 1-CQs not covered by Theorem 24 is P-hard.

Theorem 26. If q is an aperiodic twinless path 1-CQ, then answering both (covA, q) and (cov⊥A , q) is P-hard.

Proof. The theorem is proved by an FO-reduction of the monotone circuit evaluation problem, which is known to be P-
complete [98]. We remind the reader that a monotone Boolean circuit is a directed acyclic graph C whose vertices are called 
gates. Gates with in-degree 0 are input gates. Each non-input gate g is either an AND-gate or an OR-gate, and has in-degree 2
(with the two edges coming in from gates we call the inputs of g). One of the non-input gates is distinguished as the output 
gate. Given an assignment α of F and T to the input gates of C , we compute the value of each gate in C under α as usual 
in Boolean logic. The output C(α) of C on α is the truth-value of the output gate. For every monotone Boolean circuit C and 
every assignment α, we construct a twinless ABox AC ,α whose size is polynomial in the sizes of q and C , and then show 
that C(α) = T iff covA, AC ,α |= q iff cov⊥A , AC ,α |= q (cf. (8)).

We prove the theorem for aperiodic 1-CQs with a single F -node (the other case is symmetric). Suppose q = qlr for some 
l, r with l + r ≥ 1. Then there can be three reasons for q being aperiodic: (i) l = 0 and q is not right-periodic, (ii) r = 0 and 
q is not left-periodic, or (iii) l, r ≥ 1. In each of the three cases (i)–(iii), we give a different reduction.

(i) If q= q0r and q is not right-periodic, then r ≥ 2. We let

n=
{

r, if 〈r1〉 = 〈r2〉 = · · · = 〈rr〉;
min {i | 1 < i ≤ rand〈ri〉 �= 〈r1〉}, otherwise.

Then n ≥ 2. The ABox AC ,α is built up from isomorphic copies of the following intervals: l = (bq, x0), r1 = (x0, x1), r =
(x1, xn−1), s= (xn−1, xn), and t = (xn, eq). Note that s is nonempty and has no T -nodes. On the other hand, l can be empty 
when bq = x0, r can be empty when n = 2, and t can be empty when xn = eq .

bq

F

x0

T

x1

T
. . .

T

xn

T

xn−1

T

xn eq

l r1 r2 rn−1 s= rn t

r

We use the gadgets in Fig. 3 to simulate the AND- and OR-gates. For AND-gates, we distinguish between two cases 
|s| > |r1| and |s| ≤ |r1|, while the gadget for OR-gates is the same in both cases. Throughout, in our pictures of ABoxes, 
lower case letters like a, b, z, . . . are just pointers, not actual labels of nodes. In Fig. 3, if r = ∅ then z = a′ and z′ = b are 
labelled only by A.

Given a monotone circuit C and an assignment α, we construct AC ,α as follows. With each non-input gate g we associate 
a fresh copy of its gadget. When the inputs of g are gates ga and gb then, for each i = a, b, if gi is a non-input gate, then 
we merge node c of the gadget for gi with node i in the gadget for g; and if gi is an input gate, we replace the label A of 
i and i′ (if available) in the gadget for g with α(gi). Finally, we replace the label A of node c in the gadget for the output 
gate with F . We claim that covA, AC ,α |= q iff C(α) = T .

(⇐) is proved by induction on the number of non-input gates in C . The basis is obvious. For the induction step, suppose 
the output gate g in C is an AND-gate with inputs ga and gb , at least one of which is a non-input gate. Let I be an arbitrary 
model of covA and AC ,α . If both a and b in the gadget for g are in TI , then it is easy to check that we always have a 
q→ I homomorphism, no matter what the labels of a′ and b′ (if available) are. It remains to consider the case when either 
a or b is in FI , and so the corresponding gi is not an input gate. Take the subcircuit C− of C whose output gate is gi . Then 
AC−,α is the sub-ABox of AC ,α with node c in the gadget for gi as its topmost node, and A(c) replaced by F (c). Now, if 
I− is the restriction of I to AC−,α (and so c ∈ FI

−
), then by IH there is a q→ I− homomorphism, and so I |= q as well. 

The case when the output gate g in C is an OR-gate is similar.
22



O. Gerasimova, S. Kikot, A. Kurucz et al. Artificial Intelligence 309 (2022) 103738
AND-gate gadget for |s|> |r1|

c
A

A

a′

T

Tu

a
A

T

z

A

b′

T

T

b
A

l

l

l r1

r1

r

s

t

r1

r

s

t

rst

for |s| ≤ |r1|

A
c

T z′

A
b

A

a

l

r1

r

s t

OR-gate gadget

A
c

T

T

a
A

T

T

b
A

l

r1

r

s

t

r1

r

s

t

Fig. 3. Gate gadgets in case (i).

(⇒) Suppose C(α) = F . To show covA, AC ,α �|= q, we define a model I of covA and AC ,α inductively by labelling the 
A-nodes in the gadget for each non-input gate g of C by F or T as follows: node c is labelled by the truth-value of g under 
α, while node i (and node i′ if applicable), for i = a, b, is labelled by the truth-value of gi under α, where ga and gb are the 
inputs of g . Suppose, on the contrary, that there is a homomorphism h : q→ I. We exclude all options for the image h(q)

of q. To this end, we track possible locations for h(x0) ∈ FI . Let the non-input gate g be such that h(x0) is in the gadget for 
g and the inputs of g are gates ga and gb . We may assume that h(x0) is different from nodes a and b, because if h(x0) = i
for i ∈ {a, b} then gi must be a non-input gate (otherwise there is no room for h(q) in AC ,α ), and so h(x0) = c in the gadget 
for gi .

Suppose first that g is an AND-gate and |s| > |r1|. We have the following cases:

a,a′ ∈ TI, b,b′, c ∈ FI: If h(x0) = c, then h(x1) = a′ and, since b′ ∈ FI , h(q) cannot continue ‘horizontally’ towards b′ . But 
then, since |s| > |r1|, the node h(xn) must be strictly between u and a which is impossible because there are no T -nodes 
in s. We cannot have h(x0) = b′ because b ∈ FI and there is no room for h(q) in t .

a,a′, c ∈ FI, b,b′ ∈ TI: If h(x0) = a′ then, since a ∈ FI , h(q) cannot continue ‘vertically’ towards a. Then h(x1) is the central 
T -node. But then, since |s| > |r1|, the node h(xn−1) must be strictly between b′ and z, which is impossible because there 
are no T -nodes in s.

a,a′,b,b′, c ∈ FI: This case is covered by the previous ones.

Suppose next that g is an AND-gate and |s| ≤ |r1|. Then h(x0) = c and h(xn−1) = b, provided that b ∈ TI (otherwise such 
h is impossible), which means that a ∈ FI , and so h(xn) is located in some other gadget g′ whose node c is merged with 
the current b = h(xn−1). However, this is impossible because of the following. In every gadget, the ‘edges’ leaving node c
are all labelled by r1. As xn−1 is ‘s-connected’ to xn and h(xn−1) = c in the gadget for g′ , if |s| < |r1| then h(xn) must be 
strictly between c and the end-node of an r1-edge, but there are no T -nodes there. So suppose |s| = |r1|. Then h(xn) is the 
end-node of an r1-edge in the gadget for g′ , and so 〈s〉 = 〈r1〉. Now it follows from the definition of n and s that n = r
and 〈r1〉 = · · · = 〈rr〉 = 〈s〉. As h(xr) = h(xn) is the end-node of an r1-edge starting at c in the gadget for g′ , an inspection 
of the gate-gadgets shows that rr+1 = (xr, eq) = t must be mapped to a non-empty sequence of r1-intervals followed by t
(either in the gadget for g′ , or in some subsequent gadgets). So 〈rr+1〉 must be a possibly empty sequence of 〈r1〉s, possibly 
followed by a non-empty proper prefix of 〈r1〉, contrary to q being not right-periodic.

Finally, if g is an OR-gate and h(x0) = c in the gadget for g , then both a and b of the gadget are in F I , and so h(xn) ∈ FI , 
which is a contradiction.

The proof of (ii) is a mirror image of the previous one.
(iii) If q = qlr and l, r ≥ 1, then AC ,α is built up from isomorphic copies of the following intervals: l = (bq, x−1), r =

(x−1, x0), s= (x0, xr), and t = (xr, eq). Note that r is not empty and has no T -nodes, while l and t may be empty.

bq

T

x−1

F

x0

T

xr eq

l r s t

We use the gadgets in Fig. 4 to simulate the AND- and OR-gates. The number of A-nodes in the gadget for a non-output 
AND-gate exceeds |q| + 2.

Given a monotone circuit C and an assignment α, we construct AC ,α as follows. With each non-input gate g we associate 
a fresh copy of its gadget. When the inputs of g are gates ga and gb then, for each i = a, b, if gi is a non-input gate, then 
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output AND-gate gadget
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Fig. 4. Gate gadgets in case (iii).

we merge the topmost A-node of the gadget for gi with node i in the gadget for g; and if gi is an input gate, we replace 
the label A of i in the gadget for g with α(gi). We claim that covA, AC ,α |= q iff C(α) = T .

(⇐) is proved by induction on the number of non-input gates in C . The basis (when C has one non-input gate) is 
obvious. For the induction step, suppose the output gate g in C is an OR-gate with inputs ga and gb , at least one of which 
is a non-input gate. Let I be an arbitrary model of covA and AC ,α . If at least one of a or b in the gadget for g is in TI , 
then clearly I |= q. It remains to consider the case when a and b are both in FI . Let i be such that gi is a non-input gate. 
There are two cases. (a) If node z in the gadget for gi is in FI , consider the subcircuit C− of C whose output gate is gi . 
Then AC−,α is the sub-ABox of AC ,α with z as its topmost node, and A(z) replaced by F (z). Now, if I− is the restriction 
of I to AC−,α (and so z ∈ FI

−
) then, by IH, there is a q→ I− homomorphism, and so I |= q as well. (b) If z ∈ TI then gi

is an AND-gate and, as the topmost A-node in the gadget for gi is in FI , there is an A-node in the gadget for gi that is in 
TI while the next A-node above it is in F I . So we have a q→ I homomorphism. The case when the output gate of C is 
an AND-gate is similar.

(⇒) Suppose C(α) = F . To show covA, AC ,α �|= q, we define a model I of covA and AC ,α by putting the A-nodes of the 
gadget for any gate g in C to FI (or TI) if the truth-value of g under α is F (or, respectively, T ). Suppose, on the contrary, 
that there is a homomorphism h : q→ I. We track the possible locations of h(x0) ∈ FI:

– If the output gate is an AND-gate, then h(x0) cannot be the F -node of its gadget because then h(x−1) = a and h(xr) = b, 
and so at least one of them would be in F I , which is a contradiction.

– If the output gate is an OR-gate, then h(x0) cannot be the F -node of its gadget because then either h(x−1) = a or 
h(x−1) = b, and so h(x−1) would be in F I , a contradiction.

– So suppose h(x0) is an A-node in a gadget for a non-input and non-output gate g . If g is an OR-gate, then either 
h(x−1) = a or h(x−1) = b in the gadget for g , and so h(x−1) would be in F I , a contradiction. So suppose g is an AND-
gate, and consider the gadget for g . Then h(x0) cannot be any A-node located above z, because otherwise h(x−1) would 
be the previous A-node, and so in FI , a contradiction. Finally, if h(x0) = z then, as the vertical line comprised of the r
is longer than q and contains no T -nodes, h(x1) ∈ TI must also be in the gadget for g , and it must be in one of the 
horizontal s. But this is impossible because r is non-empty, and so the distance between z = h(x0) and h(x1) in the 
gadget would be greater than the distance between x0 and x1 in q.

Thus, we cannot have a homomorphism h : q→ I. �
The proof above bears some superficial similarities to the construction of Afrati and Papadimitriou [47] in their clas-

sification of binary chain sirups. One could also draw some parallels with the proof of P-hardness for OMQs with an EL
ontology given by Lutz and Sabellek [34,35], who used a reduction of path systems accessibility (PSA) rather than monotone 
circuit evaluation.

The most difficult part of our tetrachotomy is proving coNP-hardness of dd-sirups with path 2-CQs. Despite the abun-
dance of results on algorithmic aspects of graph homomorphisms [87], we failed to find any known technique applicable to 
our case. In the remainder of the article, we develop a new method for establishing coNP-hardness of disjunctive OMQs.
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6. Proving CONP-hardness: the bike technique

Theorem 27. If q is a twinless path 2-CQ, then answering both (covA, q) and (cov⊥A , q) is coNP-hard.

We prove Theorem 27 by a polynomial reduction of the complement of NP-complete 3SAT [98]. Recall that a 3CNF is a 
conjunction of clauses of the form �1 ∨ �2 ∨ �3, where each �i is a literal (a propositional variable or a negation thereof). 
The decision problem 3SAT asks whether a given 3CNF ψ is satisfiable. For any 3CNF ψ , we construct a twinless ABox Aq,ψ

whose size is polynomial in the sizes of q and ψ , and show that ψ is satisfiable iff covA, Aq,ψ �|= q iff cov⊥A , Aq,ψ �|= q (cf. 
(8)). The construction, called the bike technique, builds Aq,ψ from many copies of q via three major steps:

1. First, we represent the truth-values of the literals in ψ by gadgets called cogwheels.
2. Next, we connect cogwheels to represent negation properly by gadgets called bikes.
3. Finally, we connect bikes to represent the interaction of the clauses in ψ and obtain Aq,ψ .

These steps will be defined and investigated in detail in Sections 6.1–6.3. But before that we explain the underlying ideas 
and illustrate them by an example. Each cogwheel W in Step 1 has many A-nodes (the number depends on |q| and the 
number of clauses in ψ ) where the different copies of q meet. Each W is such that, for every model I of covA and W, 
we have I �|= q iff the A-nodes in W are all in TI or are all in FI . If a variable p occurs in ψ , then in Step 2 a bike B, 
representing the pair {p, ¬p} of literals, is assembled from two disjoint cogwheels by connecting them via A-nodes using 
two further copies of q. We have pairwise disjoint bikes for all variables occurring in ψ . Each bike B is constructed in such 
a way that, for every model I of covA and B, we have I �|= q iff the truth-values in I represented by the two cogwheels 
of B are opposites of each other. Finally, in Step 3, for each clause c = �1 ∨ �2 ∨ �3 in ψ , we use a further copy qc of q
to connect, via three A-nodes, three cogwheels from the bikes representing {�1, ¬�1}, {�2, ¬�2} and {�3, ¬�3} in such a 
way that for every model I of covA and the resulting ABox Aq,ψ , we have I �|= q iff the labels of the three ‘c-connection’ 
A-nodes in I define an assignment satisfying c. If in Step 1 we choose the number of A-nodes in the cogwheels to be 
large enough, then in each cogwheel we can use different ‘c-connection’ A-nodes for different clauses, and they can also be 
different from those A-nodes that are used for constructing the bikes from the cogwheels.

Example 27.1. Consider the d-sirup (covA, q) with the 2-CQ q shown in the picture below (with R on edges omitted).

T T F F

Let ψ = c1 ∧ c2 ∧ c3, where c1 =¬p ∨q ∨¬r, c2 = p ∨q ∨¬r, and c3 = p ∨¬q ∨ r. Fig. 5 shows the steps of the construction 
of Aq,ψ . In Step 1, we construct six cogwheels, each from four copies of q, representing one of p, ¬p, q, ¬q, r, ¬r. Then in 
Step 2 we construct three bikes, representing the pairs {p, ¬p}, {q, ¬q} and {r, ¬r}. Finally, we connect the bikes in Step 3 to 
obtain Aq,ψ . Given an assignment a : {p, q, r} →{T , F }, we define a model Ia of covA and Aq,ψ as follows: for v ∈ {p, q, r}, 
if a(v) = T then the A-nodes in the v-cogwheel are in TIa and in the ¬v-cogwheel are in FIa ; and if a(v) = F then the 
A-nodes in the v-cogwheel are in FIa and in the ¬v-cogwheel are in TIa . It is tedious but not hard to check that Ia �|= q
iff a satisfies ψ .

It is far from obvious what exactly are the particular properties of this construction that can be generalised to arbitrary
twinless path 2-CQs (just consider some permutations of the F - and T -nodes in q above). On the one hand, it is easy to 
identify what is needed for the ‘if covA, Aq,ψ �|= q then ψ is satisfiable’ direction to hold. However, the main obstacle in 
proving the converse implication is that, given a model I determined by an assignment satisfying ψ , we need to exclude 
all q→ I homomorphisms, not just those that map q onto one of its copies in Aq,ψ . At each of the three steps, there can 
be such ‘parasite’ q→ I homomorphisms, and there is no single, universal way of correctly assembling the Aq,ψ for all q
and ψ . In the remainder of the article, we show how to overcome this obstacle.

We fix some twinless path 2-CQ q and use the following notation. For any k, we let tk ( fk) denote the kth T -node 
(F -node) in q. In particular, t1, tlast−1, and tlast denote, respectively, the first, the last but one, and the last T -node in q. 
Given any path CQ q′ , we write ≺q′ and �q′ for the ordering of nodes in q′ , and δq′ for the distance in q′ , that is, δq′ (x, y)

is the number of edges in the path from x to y whenever x �q′ y. As before, we omit the subscripts when q′ = q, and set 
|q| = δ(bq, eq), for the first (root) node bq and the last (leaf) node eq in q.

Throughout, when proving statements of the form covA, A �|= q for some ABox A, we use a generalisation of homomor-
phisms, which allows us to regard our CQs as if they contained a single binary predicate only. Given a model I of an ABox 
A, we call a map h : q→ I a subhomomorphism if the following conditions hold:

– h(x) ∈ TI , for every T -node x in q, and h(x) ∈ FI , for every F -node x in q;
– for any nodes x, y in q, if R(x, y) is in q for some R , then S

(
h(x), h(y)

)
is in A for some S .
25



O. Gerasimova, S. Kikot, A. Kurucz et al. Artificial Intelligence 309 (2022) 103738
A
T

F

A

T

F
A

T

F

A

T

F

�

Step 1:

T T A A

A A F F

� ¬�

Step 2:

Step 3:

Aq,ψ

¬p

p

¬q

q

r

¬r

T
qc1

A A A

T
qc2

A
A A

T
qc3

A A A

Fig. 5. An example of the bike-technique.
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W.
.
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.
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Fig. 6. An n-cogwheel W for q.

The ABoxes A we build from copies of q will contain cycles, but these cycles will be large compared to |q|. Thus, for any 
subhomomorphism h mapping q to some model I of A, h(q) can always be regarded as a path CQ, and we have the 
following obvious ‘h-shift’ property:

δ(y, z)= δh(q)

(
h(y),h(z)

)
, for all nodes y and z in q. (20)

6.1. Representing the truth-values of literals by cogwheels

For n ≥ |q|, we take n disjoint copies q1, . . . , qn of q. For any j, 1 ≤ j ≤ n, and any node x in q, let x j denote the copy 
of x in q j . For each j, we pick a T -node t j and an F -node f j in q j , calling the selected nodes contacts. We replace the T -
and F -labels of all the contacts with A, and then glue f j together with t j+1 for every j, 1 ≤ j ≤ n, with ± being understood 
throughout modulo n. We call the resulting ABox W an n-cogwheel (for q); see Fig. 6. Given two contacts c1 = f i = t i+1 and 
c2 = f j = t j+1, we define the contact-distance between c1 and c2 in W as min

(|i − j|, n − |i − j|).
As shown in Lemma 27.3 below, it is straightforward to see that, for any n-cogwheel W, if I is a model of covA and W

with I �|= q, then either all contacts of W are in TI or all contacts of W are in FI . We want the converse implication to 
hold as well, in which case W would ‘represent’ a truth-value. In order to achieve this, we need to choose the contacts in 
such a way that all possible locations in W for the image h(q) of a potential homomorphism h : q→ I are excluded. The 
following example shows an improper choice of contacts.

Example 27.2. Consider the 2-CQ shown in the picture below.

q
T

t1

F

f1

T

t2

T

t3

F

f2

Take two copies q1 and q2 of q in W. If we choose the contacts t 1 = t1
1, f 1 = f 1

1 , t 2 = t2
3, f 2 = f 1

2 , and I is such that all 
contacts of W are in FI , then we do have the following h : q→ I homomorphism:
26
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q

F

T
q2 F
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t 2 = f 1

T
T

F
q1

h

To make the search space for contacts smaller and exclude cases like in Example 27.2, we make the following assump-
tions. To begin with, we assume that

t1 ≺ f1 (21)

(as the other case is symmetric). We also assume that the contacts of the n-cogwheel W have the following properties:

t j ≺q j f j , for every j with 1≤ j ≤ n; (22)

if t j+1 = t j+1 and f j = f j , then t ≺ f , for all j with 1≤ j ≤ n. (23)

(Note that (23) does not hold in Example 27.2, as t3 ⊀ f1.) For each j, the nodes preceding t j in q j form its initial cog, while 
the nodes succeeding f j in q j form its final cog.

The following general criterion still gives us quite some flexibility in designing cogwheels:

Lemma 27.3. Suppose W is an n-cogwheel for some n ≥ |q| satisfying (22) and (23). For any model I of covA and W, we have I �|= q
iff the contacts in I are either all in TI or all in FI .

Proof. (⇒) Suppose the contact f i−1 = t i is in TI . Since I �|= q, the ‘clockwise next’ contact f i = t i+1 is also in TI . It follows 
by induction that all of the contacts in W are in TI . If the contact f i−1 = t i is in FI , then the ‘anti-clockwise next’ contact 
f i−2 = t i−1 is also in FI , from which it follows by induction that all of the contacts are in FI .

(⇐) First, suppose that I is a model of covA and W such that all contacts in I are in FI . The proof is via excluding all 
possible locations in W for the image h(q) of a potential subhomomorphism h : q→ I. As n ≥ |q|, we may consider h(q) as 
a path CQ, so �h(q) and δh(q) are well-defined. Observe that if t and f are such that t j = t j and f j = f j for some j then, by 
the definition of the minimal model I, we clearly cannot have that h(t) = t j and h( f ) = f j . In particular, there is no q→ I
subhomomorphism mapping q onto any of the q j , and so h(q) must intersect with at least two copies of q in W. Further, 
by (23), there is not enough room for h(q) to start in an initial cog and then, after reaching a contact, to finish in a final 
cog (like in Example 27.2).

So, without loss of generality, we may assume that there is some k such that 2 ≤ k < n,

h(q) intersects each of the copies q1, . . . ,qk , (24)

b1
q ≺q1 h(bq)≺q1 f1, and (25)

h(q)∩ qk �= {tk}. (26)

q1 q2

q3 qk

q1
q2

qk−1 qk

h(q)

t 1 f 1

t 2

f 2

t 3

fk−1

tk fk
. . .

Now, consider the sub-ABox H of W consisting of the copies q1, . . . , qk . For any � with 1 ≤ � ≤ k, let ι� : q� → q be the 
isomorphism mapping each x� to x. We define a function g← : ind(H) → ind(H) by taking g←(x) = h

(
ι�(x)

)
whenever x is 

a node in q� , where we consider each contact c = f� = t�+1, for 1 ≤ � < k, as a node in q�+1, that is, g←(c) = g←(t�+1) =
h
(
ι�+1(t�+1)

)
. Throughout, we use the following property of g←, which is a straightforward consequence of the h-shift in 

(20) and the similar property of the isomorphism ι�: for every � with 1 ≤ � ≤ k,

if y, z are both in the same copy q�, y, z �= f� whenever � < k, and y �q� z,

then g←(y)�h(q) g←(z) and δq� (y, z) = δh(q)

(
g←(y), g←(z)

)
. (27)
27
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As H is finite, there exists a ‘fixpoint’ of g←: a node x in H and a number N > 0 such that gN←(x) = x. We ‘shift this 
fixpoint-cycle to the left.’ More precisely, we claim that

there is a contact c with gN←(c)= c. (28)

Indeed, let y0 = x, y1 = g←(x), y2 = g2←(x), . . . , yN−1 = gN−1← (x). Then gN←(y j) = y j for every j < N , and so if one of the y j

is a contact, we are done with (28). So suppose otherwise. We cannot have that every y j is in q1, as otherwise, by (27) and 
(25), for every j ≤ N ,

δq1(b1
q, y j)= δh(q)

(
g←(b1

q), g←(y j)
)= δh(q)

(
h(bq), y j+1)

)= δq1
(
h(bq), y j+1)

)
< δq1

(
b1

q, y j+1)
)

(29)

(here + is modulo N). Therefore, by (26),

there exists j < N such that y j is in q� j and t� j ≺
q� j y j , for some � j > 1. (30)

(When � j = 1, such a contact t� j does not necessarily exist.) For j < N with � j > 1, we set d j = δ
q� j

(
t� j , y j

)
. Let K < N be 

such that

dK =min{d j | j < N and � j > 1}
(which is well-defined by (30)), and set c = f�K−1 = t�K . By (24), we have y j ≺q� j f� j whenever 1 < � j < k. Thus, by the 

definition of K and (27), for every j ≤ N , g j←(c) belongs to the same copy q�K+ j as yK+ j , g j←(c) �
q�K+ j yK+ j , and

dK = δ
q�K+ j

(
g j←(c), yK+ j

)
.

It follows, in particular, that gN←(c) belongs to the same copy q�K as yK , and δq�K

(
gN←(c), yK

) = δq�K (c, yK ). Therefore, 
gN←(c) = c, as required in (28).

It remains to show that (28) leads to a contradiction. Indeed, c ∈ FI by our assumption, and so c cannot be in TI by 
the minimality of I. On the other hand, we show by induction on j ≥ 1 that g j←(c) ∈ TI , and so c = gN←(c) ∈ TI . If j = 1
then g←(c) = h

(
ι�(t�)

)
for some �, and so g←(c) ∈ TI as ι�(t�) is a T -node in q and h is a subhomomorphism. If j > 1

then g j−1← (c) ∈ TI by IH. Thus, g j−1← (c) is not a contact and ι�
(

g j−1← (c)
)

must be a T -node in q for some �. Therefore, 
g j←(c) = h

(
ι�

(
g j−1← (c)

))
is in TI , as h is a subhomomorphism.

The case of I with contacts in TI is similar. Now we define a function g→ : ind(H) → ind(H) by taking again g→(x) =
h
(
ι�(x)

)
whenever x is a node in q� , but now we consider each contact c = f� = t�+1 as a node in q� , that is, g→(c) =

g→(f�) = h
(
ι�(f�)

)
. Then, in the proof of (28) for g→ , we ‘shift the fixpoint-cycle to the right’. �

Remark 27.4. It is to be noted that if we make more specialised assumptions on the choice of contacts, then Lemma 27.3 can 
have a more straightforward proof. For example, suppose that the n-cogwheel W satisfies (22) and f j = f j

1 , for all j with 
1 ≤ j ≤ n. Given a model I such that all contacts of W have the same truth-value, we can show that no subhomomorphism 
h : q→ I exists by excluding the possible locations of h( f1):

– h( f1) cannot be a contact f j , otherwise h(t) is also a contact, for the T -node t with t j = t j ;
– h( f1) cannot be in the final cog of some q j , otherwise there is no room for h(q) in that cog; and
– there are no other options for h( f1), as there is no F -node preceding f1 in q.

Unfortunately, as illustrated in Example 27.6 below, we cannot always assume our n-cogwheels to be that simple.

6.2. Representing negation by bikes

For each variable in the 3CNF ψ , we take a fresh pair of cogwheels W• and W◦ and connect them using two more 
fresh copies of q in a special way. We want to achieve that, for any model I of covA and the resulting ‘two-wheel’ ABox, 
we have I �|= q iff the two cogwheels W• and W◦ ‘represent’ opposite truth-values:

either all contacts ofW• are in FI and all contacts ofW◦ are in TI,

or all contacts ofW• are in TI and all contacts ofW◦ are in FI. (31)

To this end, suppose W• and W◦ are two disjoint n-cogwheels, for some n > 4|q| + 2, built up from the q-copies 
•q 1, . . . , •q n and ◦q 1, . . . , ◦q n , respectively. For i = 1, . . . , n and ∗ = •, ◦, we denote the contacts in ∗q i by ∗t i and ∗f i ; and 
for any node x in q, we denote by ∗x i the copy of x in ∗q i . We pick two contacts •f i• = •t i•+1 and •f j• = •t j•+1 in W•
28
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Fig. 7. An n-bike B for q.

that are ‘far’ from each other in the sense that the contact-distance between them in W• is > 2|q|. Similarly, we pick two 
contacts ◦f i◦ = ◦t i◦+1 and ◦f j◦ = ◦t j◦+1 in W◦ such that the contact-distance between them in W◦ is > 2|q|.

Next, let Fq, Tq be two more fresh and disjoint copies of q. For Z = F , T and any node x in q, we denote by Zx the 
copy of x in Zq. We connect W• and W◦ via Fq and Tq as follows. First, we pick two F -nodes f• and f◦ with f• ≺ f◦
in q, and replace their F -labels by A. Then we glue together node F f• of Fq with the contact •f i• = •t i•+1 of W• , and 
also glue together F f◦ with the contact ◦f i◦ = ◦t i◦+1 of W◦ . Finally, we pick two T -nodes t• and t◦ with t• ≺ t◦ in q, and 
replace their T -labels by A. Then we glue together node Tt• of Tq with the contact •f j• = •t j•+1 of W• , and also glue 
together Tt◦ with the contact ◦f j◦ = ◦t j◦+1 of W◦ . The resulting ABox B is called an n-bike (for q), see Fig. 7. We call the 
contacts F f• = •f i• = •t i•+1 and F f◦ = ◦f i◦ = ◦t i◦+1 F -connections in B; the F -neighbourhood of B consists of those contacts 
whose contact-distance from an F -connection is ≤ |q|. Similarly, the contacts Tt• = •f j• = •t j•+1 and Tt◦ = ◦f j◦ = ◦t j◦+1

T-connections in B, and the T-neighbourhood of B consists of those contacts whose contact-distance from a T-connection is 
≤ |q|.

Using Lemma 27.3 and the fact that the F -connections are F -nodes in Fq while the T-connections are T -nodes in Tq, it 
is straightforward to see that, for any n-bike B, if I is a model of covA and B with I �|= q, then (31) holds.

However, for the converse implication to hold, we need to choose the contacts that are (a) the F -connections in Fq, (b)

the T-connections in Tq, and (c) located in the F - and T-neighbourhoods in the two cogwheels of B carefully, in such a 
way that all possible locations in B for the image h(q) of a potential homomorphism h : q→ I are excluded. So suppose I
is a model of covA and B satisfies (31). We will again try to exclude all h : q → I subhomomorphisms. To begin with, as 
n > 4|q| > |q|, we may consider the image h(q) of q in I as a path CQ. If we choose all the contacts in (a)–(c) above in 
such a way that (22) and (23) hold for both cogwheels in B then, by Lemma 27.3, we know that h(q) must intersect with 
at least one of Fq and Tq. Therefore, the intersection of h(q) with any of the two n-cogwheels cannot go beyond their F -
and T-neighbourhoods. Further, it is straightforward to see that because of (31),

there is no subhomomorphism h : q→ I such that h(f•)= F f• and h(f◦)= F f◦, and

there is no subhomomorphism h : q→ I such that h(t•)= Tt• and h(t◦)= Tt◦. (32)

(In particular, there is no q → I subhomomorphism mapping q onto Fq or onto Tq.) Because of this, h(q) must properly 
intersect with at least one of the two n-cogwheels W• or W◦ in the sense that the intersection of h(q) and the cogwheel 
is not just a T- or F -connection. As the F -connections are of contact-distance > 2|q| from the T-connections, h(q) cannot 
intersect with both Fq and Tq at the same time. It is easy to check that, by (32), all options for such a h(q) are covered by 
the eight cases given in Fig. 8.

We aim to show that, for every 2-CQ, suitable contact choices always exist by actually providing an algorithm that, given 
any 2-CQ q, describes contact choices that are suitable for an n-bike constructed from copies of q. For some 2-CQs the 
suitable contact choices are straightforward (even uniquely determined by (22) and (23)), for some others not so. In general, 
the different cases in Fig. 8 place different constraints on the suitable contact choices. There might even be some further 
interaction among these constraints because h(q) might intersect, say, the T-neighbourhoods of both cogwheels in B. These 
interactions, together with constraints (22) and (23), make finding a general solution a tricky cat-and-mouse game. We 
have tried several different ways of systematising the search for solutions, and ended up with the following choices in our 
‘heuristics’ (with Remark 27.4 motivating (H2)):

(H1) We try to choose all contacts in a way that results in as few cases as possible.
(H2) In excluding possible locations for h(q), we aim to track h( f1). So we aim to choose the contacts in such a way that 

leaves as few options for h( f1) as possible.
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(1)T h(q) starts in W• and h(t•)≺h(q)
T t•

T t• T t◦ Tq

W• W◦

h(q)
. . .

(2)T h(q) starts in Tq and ends in W•

T t• T t◦ Tq

W• W◦

h(q)

(3)T h(q) starts in W◦ and ends in Tq

T t• T t◦ Tq

W• W◦

h(q)

(4)T h(q) ends in W◦ and T t◦ ≺h(q) h(t◦)

T t• T t◦ Tq

W• W◦

h(q)
. . .

(1)F h(q) starts in W• and h(f•)≺h(q)
F f•

F f• F f◦ Fq

W• W◦

h(q)
. . .

(2)F h(q) starts in Fq and ends in W•

F f• F f◦ Fq

W• W◦

h(q)

(3)F h(q) starts in W◦ and ends in Fq

F f• F f◦ Fq

W• W◦

h(q)

(4)F h(q) ends in W◦ and F f◦ ≺h(q) h(f◦)

F f• F f◦ Fq

W• W◦

h(q)
. . .

Fig. 8. Possible locations for h(q) intersecting Fq or Tq.

In particular, in light of (H1) and (H2), we decided to go for f• = f1 and f◦ = f2 as F -connections. This leaves us with only 
two options for h( f1) in Fq: its two contacts f• or f◦ . However, we still have to deal with case distinctions in the choices 
for •t i•+1 and ◦t i◦+1 as illustrated by the following examples.

Example 27.5. (i) Consider the 2-CQ

q
T

t1

T

t2

F

f1

F

f2

If we choose •t i•+1 = •t i•+1
1 and •f i•+1 = • f i•+1

1 , and I is such that all contacts of W• are in FI and all contacts of W◦
are in TI , then we do have the following h : q→ I homomorphism (see case (2)F in Fig. 8):

q
T T F F

T T FI

F f1 = • f i•+1
1

T

FI

• f i•+1
1

. . . W•

Fq
TI F

•q i•+1

h

Note that choosing •f i•+1 = • f i•+1
2 would not help.

(ii) Consider the 2-CQ

q
T

t1

T

t2

F

f1

T F

f2
30
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If we choose ◦t i◦+1 = ◦t i◦+1
1 and ◦f i◦+1 = ◦ f i◦+1

1 , and I is such that all contacts of W• are in TI and all contacts of W◦
are in FI , then we do have the following h : q→ I homomorphism (see case (4)F in Fig. 8):

q
T T F T F

T
Fq

T TI

F f1

T FI

F f2 = ◦t i◦+1
1

T FI

◦ f i◦+1
1

. . . W◦

T F

◦q i◦+1

h

Note again that choosing ◦f i◦+1 = ◦ f i◦+1
2 would not help.

(iii) On the other hand, as shown in Lemma 27.7 below, the contact choices of •t i•+1 = •t i•+1
1 , •f i•+1 = • f i•+1

1 , ◦t i◦+1 =
◦t i◦+1

1 , and ◦f i◦+1 = ◦ f i◦+1
1 are suitable for any of the following three 2-CQs:

T

t1

T

t2

F

f1

F

f2

T

t1

F

f1

T

t2

F

f2

T

t1

F

f1

F

f2

T

t2

There are other sources of inherent case distinctions. For example, in light of Remark 27.4, it would be tempting to try 
(the copies of) f1 as contacts throughout the F -neighbourhoods of W• and W◦ . However, this is not always possible, as 
illustrated by the following examples.

Example 27.6. (i) Take any 2-CQ q that contains only two F -nodes. Thus, we must choose f• = f1. If we choose •f i• = • f i•
1 , 

then in case (2)F it is always possible to start h(q) in Fq, map f1 to F f• = • f1 = •f i• = • f i•
1 , and finish h(q) in the final cog 

of •q i• .
(ii) Consider the 2-CQ

T

t1

T

t2

F

f1

F

f2

Then we must choose f• = f1 and f◦ = f2, and so F f• = F f1 and F f◦ = F f2. If we choose ◦f i◦ = ◦ f i◦
1 , and I is such that all 

contacts of W• are in TI and all contacts of W◦ are in FI , then we do have the following h : q→ I homomorphism (see 
case (4)F in Fig. 8):

q
T T F F

T
Fq

T TI

F f1

FI

F f2 = ◦ f i◦
1

F

◦ f i◦
2

◦q i◦

h

There are also examples showing that, unlike the F -connections, the T-connections cannot be chosen uniformly for all 
possible 2-CQs q. (The problems we face are not ‘symmetric counterparts’ of those with the F -connections because of our 
overall assumption that t1 ≺ f1; see (21).) We hope that the above examples convince the reader that, even after fixing (H1) 
and (H2) (or any other heuristics), finding a general solution that satisfies (22) and (23) but excludes all cases in Fig. 8 for 
any 2-CQ q is quite a challenge. The following lemma describes such a solution found along the lines of (H1) and (H2):

Lemma 27.7. Let B be an n-bike, for some n ≥ 4|q| + 2, built up from the n-cogwheels W• and W◦ , each satisfying (22) and (23). 
Suppose B is such that the following hold for its T-connections:

t• = t1, t◦ =
{

t , if f1 ≺ tlast, where t is the first T -node succeeding f1,

tlast, if tlast ≺ f1;

the following hold for its T-neighbourhood:
31
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•t j• = •t j•� , where t� is the last T -node preceding f1, •f j• =
{ • f j•

1 , if f1 ≺ tlast,
• f j•

2 , if tlast ≺ f1,

◦t j◦ = ◦t j◦
1 , ◦f j◦ =

{ ◦ f j◦
2 , if tlast ≺ f1 and δ(tlast−1, tlast)= δ(tlast, f1),

◦ f j◦
1 , otherwise,

∗tk = ∗t k
1 , ∗fk = ∗ f k

1 , for ∗ = •,◦ and for any other k with j∗ − |q| ≤ k≤ j∗ + |q|;
the following hold for its F -connections:

f• = f1, f◦ = f2;

and the following hold for its F -neighbourhood, for ∗ = •, ◦:

∗t i∗ = ∗t i∗
1 , ∗f i∗ = ∗ f i∗

2 ,

∗t i∗−k = ∗t i∗−k
1 , ∗f i∗−k = ∗ f i∗−k

1 , for 0 < k≤ |q|,
∗t i∗+� =

{ ∗t i∗+�
1 , if tlast ≺ f1 and δ( f1, f2) < δ(t1, f1),

∗t i∗+�� , otherwise, where t� is the last T -node preceding f1,

∗f i∗+� =
{ ∗ f i∗+�

2 , if tlast ≺ f1 and δ( f1, f2)≥ δ(t1, f1),

∗ f i∗+�
1 , otherwise,

for 1≤ �≤ |q|.
Then, for any model I of covA and B, we have

I �|= q iff either all contacts ofW• are in TI and all contacts ofW◦ are in FI

or all contacts ofW• are in FI and all contacts ofW◦ are in TI.

It is straightforward to check that n-bikes B satisfying the conditions of the lemma always exist: The F - and T-
neighbourhoods of B can be kept disjoint by taking > 2|q| contact-distance between the F - and T-connections of each 
of the cogwheels in B and, by choosing, say, ∗tk = ∗t k

1 and ∗fk = ∗ f k
2 for all other k and ∗ = •, ◦, conditions (22) and (23)

hold in both cogwheels.

Proof. The implication (⇒) of Lemma 27.7 clearly holds for any n-bike B by the (⇒) direction of Lemma 27.3. To show 
(⇐), suppose B is as above, and I is a model of covA and B such that (31) holds. The proof is via excluding all possible 
locations in B for the image h(q) of a potential subhomomorphism h : q → I. As we discussed above, we have the eight 
cases in Fig. 8. In line with (H2), in each of these eight cases, we track the location of h( f1), and exclude all options for it. 
Throughout, our arguments will use the h-shift property in (20) without explicit reference.

First, we deal with the cases when h(q) ∩ Tq �= ∅:

(1)T h(q) starts in W• and h(t•) ≺h(q)
Tt• .

Tt• Tt◦ Tq

W• W◦

h(q)
. . .

Then h(q) definitely properly intersects the T-neighbourhood of W• , and it might also properly intersect the T-
neighbourhood of W◦ . It follows from h(t•) ≺h(q)

Tt• that h( f1) is in Tq then h( f1) ≺Tq
T f1. As •t j•+1 = •t j•+1

1 and 
•t j•−k ≺•q j•−k

• f j•−k
1 for all k < |q|, h( f1) cannot be in the initial cog of neither •q j•+1 nor •q j•−k for any k ≤ |q|, oth-

erwise there is not enough room for h(q) in that cog. As •t j•−k = •t j•−k
1 and •f j•−k = • f j•−k

1 for all k with 0 < k ≤ |q|, 
h( f1) cannot be a contact of W• different from Tt• , otherwise h(t1) is also a contact of W• , contradicting (31). For 
the remaining options, we consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then t• = t1 and f1 ≺ t◦ , and so T f1 ≺Tq
Tt◦ . As there is no F -node preceding T f1 in Tq, h( f1) is in 

W• . As •t j• = •t j•� and •f j• = • f j•
1 , h( f1) cannot be the contact Tt◦ = ◦ f j◦

1 , otherwise h(t�) is also a contact of W• , 
contradicting (31). As there is no F -node preceding f1 in q, there are no other options for h( f1) in W• .
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•q j•

•q j•+1

•t j•�

• f j•
1 = •t j•+1

1

Tt• = Tt1 Tt◦

W◦

Tq T f1

t1 � t� f1

q

no F

If tlast ≺ f1 then t• = t1 and t◦ = tlast = t� , and so Tt◦ = Ttlast ≺Tq
T f1. As there is no F -node preceding T f1 in Tq, 

h( f1) is either in W• or in W◦ .

•q j•

•q j•+1

Tq

•t j•� = •t j•
last

• f j•
2

Tt• = Tt1
Tt◦ = Ttlast

W◦

T f1
T f2

• f j•
1

t� = tlast f1 f2

q

no F

– First, we exclude the remaining options in W• . As •t j• = •t j•� and •f j• = • f j•
2 , we cannot have h( f1) = • f j•

1 , 
otherwise both h(t�) and h( f2) are contacts of W• , contradicting (31). And if h( f1) is the contact Tt• = • f j•

2 , then 
we track the location of h(tlast). As h(q) starts in W• and h(tlast) ≺h(q) h( f1), h(tlast) is in W• . As •t j•+1 = •t j•+1

1
and t1 ≺ tlast , h(tlast) cannot be in the initial cog of •q j•+1, otherwise there is not enough room for h(q) in that 
cog. Thus, we have

δh(q)

(
h(tlast),

• f j•
2

)= δh(q)

(
h(tlast),h( f1)

)= δ(tlast, f1) < δ(tlast, f2)= δ•q j•
(•t j•

last,
• f j•

2

)
,

and so h(tlast) is a node between •t j•
last = •t j•

t� and • f j•
2 . But there is no such T -node in •q j• . As the only F -node 

preceding f2 in q is f1, there are no other options for h( f1) in W• .

•t j•
last

• f j•
2

•q j•

t� = tlast f1 f2

q

• f j•
1

h

no T

– If h( f1) is in W◦ then Tt◦ = Ttlast �h(q) h( f1). We track the location of h(tlast). As h(t•) ≺h(q)
Tt• by our assumption, 

we have h(tlast) = h(t◦) ≺h(q)
Tt◦ , and so either h(tlast) is in W• and h(tlast) ≺h(q)

Tt• , or h(tlast) is in Tq. In the 
former case, as •t j•+1 = •t j•+1

1 and t1 ≺ tlast , h(tlast) cannot be in the initial cog of •q j•+1, otherwise there is not 
enough room for h(q) in that cog. Thus, we have

δh(q)

(
h(tlast),

• f j•
2

)= δh(q)

(
h(tlast),

Tt•
)
< δh(q)

(
h(tlast),h( f1)

)=
δ(tlast, f1) < δ(tlast, f2)= δ•q j•

(•t j•
last,

• f j•
2

)
,

and so h(tlast) is a node between •t j• = •t j•
t and • f j• . But there is no such T -node in •q j• .
last � 2
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•q j• •t j•
last

• f j•
2

Tt• Tq Tt◦
. . . W◦

t� = tlast f1 f2

q

• f j•
1

h

no T

So suppose that h(t◦) = h(tlast) is in Tq. Now we track the location of h(t•) = h(t1) in W• . As •t j•+1 = •t j•+1
1 , 

h(t1) cannot be in the initial cog of •q j•+1, otherwise there is not enough room for h(q) in that cog. Thus, we 
have

δh(q)

(
h(t1),

• f j•
2

)= δh(q)

(
h(t•), Tt•

)= δTq
(
h(t◦), Tt◦

)= δTq
(
h(tlast),

Ttlast
)≤

δh(q)

(
h(tlast),h( f1)

)= δ(tlast, f1)≺ δ(tlast, f2)= δ•q j•
(•t j•

last,
• f j•

2

)
,

and so h(t1) is a node between •t j•
last and • f j•

2 . But there is no such T -node in •q j• .

Tt1

• f j•
2

Ttlast
•t j•

last
• f j•

1

Tq
. . .W• . . . W◦

t1 tlast f1 f2

q

no T
no F

h

(2)T h(q) starts in Tq and ends in W• .

Tt• Tt◦ Tq

W• W◦

h(q)

Then h(q) properly intersects the T-neighbourhood of W• only. As t• = t1 and t1 ≺ f1 by (21), h( f1) is in W• and 
Tt• = Tt1 �h(q) h( f1), otherwise there is not enough room for h(q) in Tq. Now we track the location of h(t1). Again, 
h(t1) is in W• and Tt• = Tt1 �h(q) h(t1) and otherwise there is not enough room for h(q) in Tq. As the part of q
preceding t1 is empty (containing no F - or T -nodes), if h : q → I is a subhomomorphism, then we can modify it to 
obtain a subhomomorphism from q to the restriction of I to W• , which contradicts Lemma 27.3 by (31).

(3)T h(q) starts in W◦ and ends in Tq.
Tt• Tt◦ Tq

W• W◦

h(q)

Then h(q) properly intersects the T-neighbourhood of W◦ only. As ◦t j◦+1 ≺◦q j◦+1
◦ f j◦+1

1 , h( f1) cannot be in the initial 
cog of ◦q j◦+1, otherwise there is not enough room for h(q) in that cog. As ◦t j◦−k = ◦t j◦−k

1 and ◦f j◦−k = ◦ f j◦−k
1 for all 

k with 0 < k ≤ |q|, h( f1) cannot be a contact of W◦ different from Tt◦ , otherwise h(t1) is also a contact, contradicting 
(31). To exclude the remaining options, we consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then T f1 ≺Tq
Tt◦ , and so h( f1) cannot be in Tq, otherwise there is not enough room for h(q) in Tq. As 

◦t j◦ = ◦t j◦
1 and ◦f j◦ = ◦ f j◦

1 , h( f1) cannot be the contact Tt◦ = ◦ f j◦
1 , otherwise h(t1) is also a contact of W◦ , contra-

dicting (31). As there is no F -node preceding f1 in q, there are no other options for h( f1) in W◦ .
If tlast ≺ f1 then t◦ = tlast , and so Tt◦ = Ttlast ≺Tq

T f1. As there is no F -node preceding T f1 in Tq, either h( f1) �h(q)
Tt◦

and h( f1) is in W◦ , or h( f1) = T f1, otherwise there is not enough room for h(q) in Tq. We will exclude both:

– Suppose first that h( f1) is in W◦ . As ◦t j◦ = ◦t j◦
1 and ◦f j◦ = Tt◦ is either ◦ f j◦

1 or ◦ f j◦
2 , we cannot have h( f1) = ◦ f j◦

1 : 
If ◦f j◦ = ◦ f j◦

1 then because otherwise h(t1) is also a contact of W◦ , and if ◦f j◦ = ◦ f j◦
2 then because otherwise 

both h(t1) and h( f2) are contacts of W◦ , contradicting (35) in both cases. As the only F -node preceding f2 in q
is f1, the only remaining option for h( f1) being in W◦ is when h( f1) = ◦f j◦ = ◦ f j◦

2 . Now we track the location of 
h(tlast).
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Tt◦ = Ttlast

◦ f j◦
2

◦t j◦
last

◦ f j◦
1

tlast f1 f2

q

no T

h

As ◦t j◦+1 = ◦t j◦+1
1 , h(tlast) cannot be in the initial cog of ◦q j◦+1, otherwise there is not enough room for h(q) in 

that cog. Thus, we have

δh(q)

(
h(tlast),

◦ f j◦
2

)= δh(q)

(
h(tlast),h( f1)

)= δ(tlast, f1) < δ(tlast, f2)= δ◦q j◦
(◦t j◦

last,
◦ f j◦

2

)
.

As ◦t j◦ = ◦t j◦
1 ≺◦q j◦ ◦t j◦

last , it follows that h(tlast) is between ◦t j◦
last and ◦ f j◦

2 . But there is no such T -node in ◦q j◦ , and 
so h( f1) cannot be in W◦ .

– If h( f1) = c f1 then h(tlast) = Ttlast = Tt◦ . We track the location of h(tlast−1). As ◦t j◦+1 = ◦t j◦+1
1 , h(tlast−1) cannot 

be in the initial cog of ◦q j◦+1, otherwise there is not enough room for h(q) in that cog. As ◦t j◦
last ≺◦q j◦ ◦ f j◦

1 �◦q j◦
◦f j◦ = h(tlast), we have ◦t j◦

1 �◦q j◦ ◦t j◦
last−1 ≺◦q j◦ h(tlast−1) ≺◦q j◦ ◦f j◦ , and so h(tlast−1) = ◦t j◦

last must hold (as tlast is the 
only T -node succeeding tlast−1 in q). Therefore,

δ(tlast−1, tlast)= δh(q)

(
h(tlast−1),h(tlast)

)=
=

{
δ◦q j◦

(◦t j◦
last,

◦ f j◦
2

)= δ(tlast, f2), if δ(tlast−1, tlast)= δ(tlast, f1),

δ◦q j◦
(◦t j◦

last,
◦ f j◦

1

)= δ(tlast, f1), if δ(tlast−1, tlast) �= δ(tlast, f1),

with both cases being impossible.

Ttlast

◦f j◦

Tq◦t j◦
last

T f1
T f2

tlast−1 tlast f1 f2

q

no T no T

h

(4)T h(q) ends in W◦ and Tt◦ ≺h(q) h(t◦).

Tt• Tt◦ Tq

W• W◦

h(q)
. . .

Then h(q) definitely properly intersects the T-neighbourhood of W◦ , and it might also properly intersect the T-
neighbourhood of W• . As ◦ f j◦+�

1 �◦q j◦+�
◦f j◦+� for all � ≤ |q|, h( f1) cannot be in the final cog of ◦q j◦+� for any 

� ≤ |q|, otherwise there is not enough room for h(q) in that cog. As ◦t j◦+� = ◦t j◦+�
1 and ◦f j◦+� = ◦ f j◦+�

1 for all � with 
1 ≤ � ≤ |q|, h( f1) cannot be a contact of W◦ different from Tt◦ , otherwise h(t1) is also a contact, contradicting (31). 
As there is no F -node preceding f1 in q, it follows that h( f1) must be in Tq. To exclude the remaining options, we 
consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then t◦ = t , where t is the first T -node succeeding f1. As by our assumption h(q) ends in W◦ and 
Tt◦ ≺h(q) h(t◦), it follows that T f1 ≺Tq h( f1) �Tq

Tt◦ = Tt . Now we track the location of h(t�) for the last T -node t�
preceding f1. As t1 � t� ≺ f1, it follows that h(t�) is between Tt� and h( f1), and so between Tt� and Tt . But there 
is no such T -node in Tq.
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Tt• = Tt1
Tt = Tt◦ TqTt� T f1

t� f1 t 
q

no T

h

If tlast ≺ f1 then t◦ = tlast . As h(q) ends in W◦ and Tt◦ ≺h(q) h(t◦), it follows that Tt◦ ≺h(q) h(tlast) ≺h(q) h( f1). Thus, 
h( f1) cannot be in Tq, leaving us no options.

Next, we deal with the cases when h(q) ∩ Fq �= ∅:

(1)F h(q) starts in W• and h(f•) ≺h(q)
F f• .

F f• F f◦ Fq

W• W◦

h(q)
. . .

Then h(q) definitely properly intersects the F -neighbourhood of W• , and it might also properly intersect the F -
neighbourhood of W◦ . As f• = f1, we have h( f1) ≺h(q)

F f• and h( f1) is in W• . As •t i•+1 ≺•q i•+1
• f i•+1

1 for either 
choice of •t i•+1, h( f1) cannot be in the initial cog of •q i•+1, otherwise there is not enough room for h(q) in that 
cog. As •t j•−k = •t j•−k

1 and •f j•−k = • f j•−k
1 for all k with 0 < k ≤ |q|, h( f1) cannot be a contact of W• different 

from F f• , otherwise h(t1) is also a contact of W• , contradicting (31). And as •t i• = •t i•
1 and •f i• = • f i•

2 , we cannot 
have h( f1) = • f i•

1 , otherwise both h(t1) and h( f2) are contacts of W• , again contradicting (31). As the only F -node 
preceding f2 in q is f1, there are no more options for h( f1).

•q i•+1•q i••q i•−1•q i•−2

•t i•−2
1

• f i•−2
1

•t i•−1
1

• f i•−1
1

•t i•
1

F f1

• f i•
2

...W•
• f i•

1

Fq

q
t1 f1 f2

no F no F

h

(2)F h(q) starts in Fq and ends in W• .

F f• F f◦ Fq

W• W◦

h(q)

Then h(q) properly intersects the F -neighbourhood of W• only. As f• = f1, we cannot have h( f1) ≺h(q)
F f• = F f1, 

otherwise there is not enough room for h(q) in Fq. Thus, F f• �h(q) h( f1) and h( f1) is in W• . As • f i•+�
1 �•q i•+�

•f i•+�

for all � ≤ |q|, h( f1) cannot be in the final cog of •q i• for any � ≤ |q|, otherwise there is not enough room for h(q) in 
that cog. To exclude the remaining options, we consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then •t i•+� = •t i•+�� and •f i•+� = • f i•+�
1 for all � with 1 ≤ � ≤ |q|, where t� is the last T -node preceding 

f1. Thus, h( f1) cannot be a contact of W• different from F f• , otherwise h(t�) is also a contact, contradicting (31). As 
there is no F -node preceding f1 in q, the only remaining option for h( f1) is h( f1) = F f• . Then all contacts of W• are 
in FI by (31). We track the location of h(t ) for the first T -node t succeeding f1 in q.
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Fq • f i•
2

F f• = •t i•+1�

• f i•+1
1

•t i•+2� • f i•+�
1

•q i•+�•q i•+1

•q i•

t� f1 t 
q

. . . . . .

•t i•+�
 

h

no T

As •f i• = • f i•
2 , h(t ) cannot be in the final cog of •q i• , otherwise h( f2) is also in that cog and there is not enough 

room for h(q) in that cog (unlike in Example 27.6 (i)). Further, h(t ) cannot be a contact of W• , as all contacts of W•
are in FI . As there is no T -node between t� and f1 in q, h(t ) must be in the final cog of •q i•+� for some � with 
1 ≤ � ≤ |q|. Then

δ•q i•+�

(• f i•+�
1 ,h(t )

)
< δh(q)

(F f•,h(t )
)= δh(q)

(
h( f1),h(t )

)= δ( f1, t )= δ•q i•+�

(• f i•+�
1 , •t i•+�

 
)
,

and so h(t ) is between • f i•+�
1 and •t i•+�

 . But there is no such T -node in •q i•+� .
If tlast ≺ f1 then there are two cases, depending on the relationship between δ( f1, f2) and δ(t1, f1):

– If δ( f1, f2) < δ(t1, f1) then •t i•+� = •t i•+�
1 and •f i•+� = • f i•+�

1 , for all � with 1 ≤ � ≤ |q|. Thus, h( f1) cannot be 
a contact of W• different from F f• , otherwise h(t1) is also a contact, contradicting (31). As there is no F -node 
preceding f1 in q, the only remaining option for h( f1) is h( f1) = F f• . Next, we track the location of h( f2). As 
•f i• = • f i•

2 , h( f2) cannot be in the final cog of •q i• , otherwise there is not enough room for h(q) in that cog 
(unlike in Example 27.6 (i)). Thus,

δh(q)

(•t i•+1
1 ,h( f2)

)= δh(q)

(F f•,h( f2)
)= δh(q)

(
h( f1),h( f2)

)=
δ( f1, f2) < δ(t1, f1)= δ•q ip w+1

(•t i•+1
1 , • f i•+1

1

)
,

and so h( f2) is between •t i•+1
1 and • f i•+1

1 . But there is no such F -node in •q i•+1.

•f i• = •t i•+1
1

• f i•
2

• f i•+1
1

•q i•+1•q i•
. . . W•

q
t1 f1 f2

no F

h

– If δ( f1, f2) ≥ δ(t1, f1) then •t i•+� = •t i•+�� and •f i•+� = • f i•+�
2 , for all � with 1 ≤ � ≤ |q|, where t� is the last 

T -node preceding f1. Thus, h( f1) = • f i•+�
1 cannot hold for any � with 1 ≤ � ≤ |q|, otherwise both h(t�) and h( f2)

are contacts of W• , contradicting (31). As the only F -node preceding f2 in q is f1, the only remaining option for 
h( f1) is to be a contact of W• , that is, h( f1) = •t i•+�� for some � with 1 ≤ � ≤ |q|. Again, we track the location of 
h( f2). As •f i• = • f i•

2 , h( f2) cannot be in the final cog of •q i• , otherwise there is not enough room for h(q) in that 
cog. Thus,

δh(q)

(•t i•+�� ,h( f2)
)= δh(q)

(
h( f1),h( f2)

)= δ( f1, f2)≥ δ(t1, f1) > δ(t�, f1)= δ•q i•+�

(•t i•+�� , • f i•+�
1

)
.

On the other hand,

δh(q)

(•t i•+�� ,h( f2)
)= δh(q)

(
h( f1),h( f2)

)= δ( f1, f2) < δ(t�, f2)= δ•q i•+�

(•t i•+�� , • f i•+�
2

)
,

and so h( f2) is between • f i•+� and • f i•+� . But there is no such F -node in •q i•+� .
1 2
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•t i•+��

• f i•+�−1
2

• f i•+�
2

•q i•+�•q i•+�−1

• f i•+�
1

. . . W•

q
t� f1 f2

no Fno F

h

(3)F h(q) starts in W◦ and ends in Fq.

F f• F f◦ Fq

W• W◦

h(q)

Then h(q) properly intersects the F -neighbourhood of W◦ only. We have h(f◦) �h(q)
F f◦ , as otherwise there is no room 

for h(q) in Fq. As f◦ = f2, we have h( f1) ≺h(q) h( f2) �h(q)
F f◦ and h( f1) is in W◦ . We can exclude all possible locations 

for h( f1) by the same argument as in case (1)F , with the F -neighbourhood of W◦ in place of the F -neighbourhood 
of W• .

(4)F h(q) ends in W◦ and F f◦ ≺h(q) h(f◦).

F f• F f◦ Fq

W• W◦

h(q)
. . .

Then h(q) definitely properly intersects the F -neighbourhood of W◦ , and it might also properly intersect the F -
neighbourhood of W• . As f• = f1 and f◦ = f2, there is no F -node between F f• and F f◦ in Fq, and so F f◦ �h(q) h( f1)

and h( f1) is in W◦ . We can exclude all possible locations for h( f1) by the same argument as in case (2)F , with the 
F -neighbourhood of W◦ in place of the F -neighbourhood of W• .

We excluded all possible locations in B for the image h(q) of a potential subhomomorphism h : q → I, which completes 
the proof of Lemma 27.7. �
6.3. Representing clauses with shared literals

Suppose ψ is a 3CNF with nψ clauses of the form �1 ∨ �2 ∨ �3, where each �i is a literal. We build an ABox Aq,ψ as 
follows. We let n ≥ (nψ + 2)(2|q| + 1) and, for each propositional variable p in ψ , we take a fresh n-bike Bp having n-
cogwheels Wp• , Wp◦ and satisfying the conditions in Lemma 27.7. We pick three nodes v1, v2 and v3 in q such that each 
vz is a T -node or an F -node, and v1 ≺ v2 ≺ v3. We call these three nodes the special triple of q. Then, for every clause 
c = (�c

1 ∨ �c
2 ∨ �c

3) in ψ , we proceed as follows. We take a fresh copy cq of q, consider the copies vc
1, vc

2 and vc
3 of the special 

triple in cq, and replace their F - or T -labels with A. Then, for z = 1, 2, 3, we glue vc
z to a contact

(p1) in Wp• iff either �c
z = p and vz is an F -node in q, or �c

z =¬p and vz is a T -node in q;
(p2) in Wp◦ iff either �c

z = p and vz is an T -node in q, or �c
z =¬p and vz is a F -node in q.

For example, if q looks like on the left-hand side of the picture below and c = (p ∨¬q ∨ r), then we obtain the graph shown 
on the right-hand side of the picture with the n-cogwheels depicted as circles:

q
T

v1

F

v2

F

v3

A A A
cq

Wp◦ Wq◦ Wr•

We call vc
1, vc

2 and vc
3 c-connections, while the c-neighbourhood consists of those contacts in each of the three n-cogwheels 

whose contact-distance from its c-connection is ≤ |q|. For different clauses c, c′ , we pick the c- and c′-connections ‘sharing’ 
the same n-cogwheel W in such a way that the c- and c′-neighbourhoods are disjoint from each other and from the F -
and T-neighbourhoods in W. (We can do this as n ≥ (nψ + 2)(2|q| + 1).) We treat the resulting labelled graph as an ABox, 
call it a (ψ, n)-gadget (for q), and denote it by Aq,ψ . Clearly, the size of Aq,ψ is polynomial in the sizes of q and ψ .

The following lemma is a consequence of the definition of Aq,ψ , and the ‘easy’ (⇒) direction of Lemma 27.7.

Lemma 27.8. If covA, Aq,ψ �|= q, then ψ is satisfiable.
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Proof. Suppose I is a model of covA and Aq,ψ such that I �|= q. As for each variable p in ψ , the n-bike Bp satisfies the 
conditions in Lemma 27.7, either all contacts of the n-cogwheel Wp• are in FI and all contacts of Wp◦ are in TI , or all 
contacts of Wp• are in TI and all contacts of Wp◦ are in FI . As I �|= q, for every clause c = (�c

1 ∨ �c
2 ∨ �c

3) in ψ , there is 
z = 1, 2, 3 such that either vz is a T -node in q but vc

z ∈ FI , or vz is an F -node in q but vc
z ∈ TI . Define an assignment a

by setting a(�c
z) = T for each clause c in ψ (and arbitrary otherwise). We claim that a is well-defined in the sense that 

we never set both a(p) = T and a(¬p) = T . Indeed, suppose otherwise. Suppose also that the former is because of �c1
z1 in a 

clause c1 and the latter because of �c2
z2 in a clause c2.

Case 1: vz1 is a T -node in q but vc1
z1 ∈ FI . As a(p) = T implies that �c1

z1 = p, by (p2) of the construction vc1
z1 is a contact 

in the n-cogwheel Wp◦ . So all contacts in Wp◦ are in FI . On the other hand, a(¬p) = T implies that �c2
z2 = ¬p. If vz2 is a 

T -node in q but vc2
z2 ∈ FI , then vc2

z2 is a contact in Wp• by (p1), and so all contacts in Wp• are also in FI , a contradiction. 
And if vz2 is an F -node in q but vc2

z2 ∈ TI , then vc2
z2 is a contact in Wp◦ by (p2), and so all contacts in Wp◦ are in TI , a 

contradiction again.
Case 2: vz1 is an F -node in q but vc1

z1 ∈ TI . This case is similar and left to the reader.
Thus, the assignment a is well-defined and makes true at least one literal in every clause in ψ . �
It remains to find some conditions on Aq,ψ that would guarantee that the converse of Lemma 27.8 also holds. So suppose 

that ψ is satisfiable under an assignment a. We define a model Ia of covA and Aq,ψ as follows:

For every variable p in ψ , we put

all contacts ofWp• to TIa and all contacts ofWp◦ to FIa , whenever if a(p)= T ; and (33)

all contacts ofWp• to FIa and all contacts ofWp◦ to TIa , whenever if a(p)= F .

We aim to find some conditions on Aq,ψ that would imply Ia �|= q. Just like in the case of other ABoxes built up from copies 
of q before, we are looking for conditions that exclude all possible locations in Aq,ψ for the image h(q) of a potential sub-
homomorphism h : q→ Ia . The definition of Aq,ψ allows flexibility

– in the choice of the special triple v1, v2, v3 in q, and
– also in the choices of the contacts in the c-neighbourhoods, for each clause c.

If we choose all these contacts in such a way that (22), (23) and the conditions of Lemma 27.7 hold then, by (33) and 
Lemma 27.7, we know that h(q) must intersect with at least one cq for some clause c. Therefore, the intersection of h(q)

with any of its n-cogwheels cannot go beyond its c-neighbourhoods. Further, we claim that,

for any clause c in ψ , there is no subhomomorphism h : q→ Ia such that h(vz)= vc
z for all z= 1,2,3. (34)

(In particular, there is no q → Ia subhomomorphism mapping q onto cq.) Indeed, suppose on the contrary that there is 
such a subhomomorphism h for some c. Suppose a(�c

z) = T for some a. If �c
z = p, then either vz is an F -node in q but 

vc
z ∈ TIa as it is in Wp• , or vz is a T -node in q but vc

z ∈ FIa as it is in Wp◦ , both are impossible when h(vz) = vc
z . The case 

of �c
z =¬p is dually symmetric. It follows that a(�c

z) �= T for any z= 1, 2, 3, contrary to a satisfying ψ .
By (34), h(q) must properly intersect with at least one of the three n-cogwheels Wc

1, Wc
2 and Wc

3 glued to cq in the sense 
that h(q) ∩Wc

z � {vc
z} for some z = 1, 2, 3. By (33) and Lemma 27.3, we may assume that h(q) �Wc

z for any z = 1, 2, 3. 
Also by Lemma 27.3, we may assume that if h(q) properly intersects with Wc

z , then every node in h(q) ∩Wc
z is in the 

c-neighbourhood of Wc
z . As for c �= c′ the c- and c′-neighbourhoods are disjoint, there is a unique c with h(q) properly 

intersecting with one or two of the n-cogwheels Wc
1, Wc

2 and Wc
3 glued to cq (it cannot properly intersect with all three). 

It is easy to check that, by (34), all options for such a h(q) are covered by the six cases (1)c –(6)c in Fig. 9.
We aim to show that for every 2-CQ suitable contact choices always exist by actually providing an algorithm that, 

given any 2-CQ q, describes contact choices that, for large enough n, are suitable for any 3CNF ψ and any (ψ, n)-gadget 
constructed from copies of q. Just like in case of bikes, the different potential locations of a homomorphic image place 
different constraints on our choices. By following our heuristics choices (H1) and (H2) above, we will be able to use the 
same techniques as for bikes in the proof of Lemma 27.7. In light of (H1), our algorithm chooses v1 = t1. This is because 
our assumption throughout is that t1 ≺ f1 (cf. (21)), and so t1 is the only node that is followed by at least two other F -
or T -nodes (tlast and f1) in every 2-CQ q, even if q contains only two F -nodes and two T -nodes. Similarly, v3 is chosen to 
be f2, as in general f2 is the only node that is preceded by at least two other F - or T -nodes (t1 and f1). And then v2 is 
chosen from the two ‘middle’ nodes that are always present, either tlast or f1. The choice of the ≺-smaller of tlast and f1 as 
v2 is motivated by (H2).

However, now the 3CNF ψ introduces some more ‘variables’ into our constraint system. In order to reduce the search 
space, we made some further choices in our heuristics:

(H3) Given any 2-CQ q and any assignment a satisfying some 3CNF ψ , we give an algorithm describing choices suitable for 
achieving Ia �|= q for any q such that the choices do not depend on ψ and a, only on q.
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(1)c h(q) starts in W1 and h(v1)≺h(q) vc
1

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

(2)c h(q) starts in cq and ends in W1

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)

(3)c h(q) starts in W2 and h(v2)�h(q) vc
2

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

(4)c h(q) ends in W2 and vc
2 �h(q) h(v2)

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

(5)c h(q) starts in W3

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)

(6)c h(q) ends in W3 and vc
3 ≺h(q) h(v3)

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

Fig. 9. Possible locations for h(q) intersecting cq.

(H4) The algorithm chooses the contacts in the c-neighbourhoods of Aq,ψ uniformly, not depending on the particular clause 
c, but only on q.

Yet another difficulty is that (34) is weaker than (32): It does not exclude cases when h ‘fixes’ two (but not all three) 
c-connections. Say, in case (3)c it can happen that h(q) intersects W2 and W3, at least one of them properly, it does not 
intersect W1, and both h(v2) = vc

2 and h(v3) = vc
3 hold. The following example shows how the need for excluding such a 

situation might ‘force’ particular contact choices not only for the c-connection of the ‘middle’ cogwheel, but also throughout
‘half’ of its c-neighbourhood:

Example 27.9. Consider again the 2-CQ from Example 27.2.

q
T

t1

F

f1

T

t2

T

t3

F

f2

According to the above, as f1 ≺ tlast = t3, we choose v2 = f1 (and v1 = t1, v3 = f2). Suppose that, for some clause c, the 
contact in the ‘middle’ cogwheel W2 glued together with vc

2 = c f1 is 2f x2 , in some copy 2q x2 of q. Then the argument in 
Example 27.6 (i) shows that we cannot choose 2f x2 = 2 f x2

1 , and so we must have 2f x2 = 2 f x2
2 . Now we have three choices 

for 2t x2 . However, if we choose either 2t x2 = 2t x2
1 or 2t x2 = 2t x2

2 , and Ia is such that all contacts of W1, W2 and W3 are in 
FIa , then we do have the following h : q→ Ia homomorphism (see case (3)c in Fig. 9):

T
cq

2q x2−1

2t x2−1

2 f x2
2

FIa c f1

T
2t x2

2f x2−1

F2q x2
T

T T FIa c f2

W3

. . .
W2

q
T F T T F

Therefore, 2t x2 = 2t x2
3 must hold. Let us continue with some other contact choices in the c-neighbourhood of W2. In light 

of Remark 27.4, we might want to stick to the ‘default’ contact choice for 2q x2−1, and choose 2f x2−1 = 2 f x2−1
1 . Then, as 

2t x2−1 ≺2q x2−1
2f x2−1 by (22), we must choose 2t x2−1 = 2t x2−1

1 . However, in this case (23) fails, and there is a h : q → Ia
homomorphism, as shown in Example 27.2. In fact, by repeating the above argument, we obtain that we must choose 
2f x2−k = 2 f x2−k and 2t x2−k = 2t x2−k , for every k ≤ |q|.
2 3
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In Lemma 27.10 below, we describe a general algorithmic solution to the constraint system along the lines of (H1)–(H4), 
and show that for this solution the converse of Lemma 27.8 holds. In order to formulate our solution, we need to fix some 
notation for c-neighbourhoods. With a slight abuse of notation in light of (H4), for any given clause c in ψ , we denote by 
W1, W2, W3 the three n-cogwheels the node vc

z of cq is glued to. For each z = 1, 2, 3, Wz is built up from the q-copies 
zq1, . . . , zqn , and the c-connection of Wz is obtained by glueing together node vc

z of cq with the contact z fxz = ztxz+1 of Wz

(throughout, as before, ± is modulo n).

cq
vc

1 vc
2 vc

3

W1 W2 W3

zq xz−1

zq xz

zq xz+1 zq xz

zq xz+1

zq xz+2

zf xz

vc
z

... . . .

zt xz+1

Wz

For any node x in q, we denote by cx the copy of x in cq; and for i = 1, . . . , n and z = 1, 2, 3, we denote by zxi the copy 
of x in zq i . Recall that for any k, we let tk ( fk) denote the kth T -node (F -node) in q. In particular, tlast−1 denotes the last 
but one T -node in q, and tlast the last T -node. We again assume that t1 ≺ f1 (cf. (21)), and let t� denote the last T -node 
preceding f1.

Lemma 27.10. Given a 3CNF ψ , let Aq,ψ be a (ψ, n)-gadget, for some n ≥ (nψ + 2)(2|q| + 1), built up from n-bikes, each satisfying 
the conditions of Lemma 27.7. Suppose Aq,ψ is such that the following hold for its special triple:

v1 = t1, v2 =
{

f1, if f1 ≺ tlast,

tlast, if tlast ≺ f1,
v3 = f2;

and for every clause c in ψ , the following hold for the c-neighbourhood in W1:

1t x1 = 1t x1� , 1f x1 =
{

1 f x1
1 , if f1 ≺ tlast,

1 f x1
2 , if tlast ≺ f1,

1tk = 1t k
1 , 1fk = 1 f k

1 , for any other k with x1 − |q| ≤ k ≤ x1 + |q|;
the following hold for the c-neighbourhood in W2, for k ≤ |q| and 1 ≤ � ≤ |q|:

2t x2−k =
{

2t x2−k� , if f1 ≺ tlast and there is a T -node t� with t� ≺ f2 and δ(t�, f2)= δ(t1, f1),
2t x2−k

1 , otherwise,

2f x2−k =

⎧⎪⎨
⎪⎩

2 f x2−k
2 , if f1 ≺ tlast,

2 f x2
2 , if k= 0, tlast ≺ f1 and δ(tlast−1, tlast)= δ(tlast, f1),

2 f x2−k
1 , otherwise,

2t x2+� =
{

2t x2+�� , if f1 ≺ tlast,
2t x2+�

1 if tlast ≺ f1,

2f x2+� = 2 f x2+�
1 ;

the following hold for the c-neighbourhood in W3:

3t x3 = 3t x3
1 , 3f x3 = 3 f x3

2 ,

3t x3−k = 3t x3−k
1 , 3f x3−k = 3 f x3−k

1 , for 0 < k ≤ |q|,
3t x3+� =

{
3t x3+�

1 , if tlast ≺ f1 and δ( f1, f2) < δ(t1, f1),
3t x3+�� , otherwise,

3f x3+� =
{

3 f x3+�
2 , if tlast ≺ f1 and δ( f1, f2)≥ δ(t1, f1),

3 f x3+�
1 , otherwise,

for 1≤ �≤ |q|.

Then Ia �|= q, for any assignment a satisfying ψ .
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It is straightforward to check that (ψ, n)-gadgets Aq,ψ satisfying the conditions of the lemma always exist: As ψ has 
nψ -many clauses and n ≥ (nψ +2)(2|q| +1), for different clauses c, c′ , the c- and c′-neighbourhoods of the same n-cogwheel 
W can be kept disjoint from each other and from the F - and T-neighbourhoods of W. Thus, choices for the present lemma 
do not interfere with the choices for Lemma 27.7. Also, by choosing (the corresponding copies of) t1 and f2 as contacts 
outside the F -, T- and c-neighbourhoods, conditions (22), (23) hold for all cogwheels in Aq,ψ .

Proof. Suppose a is an assignment satisfying ψ , and take the model of covA and Aq,ψ defined in (33). In light of (H4), we 
do not use any specifics about the clause c, and so we do not have explicit information about the particular labelings of 
the c-connections vc

1, vc
2 and vc

3 in Ia . However, (33) still implies that each of the attached cogwheels W1, W2 and W3

‘represents’ a truth-value:

for each z= 1,2,3, the contacts ofWz are either all in TIa or all in FIa . (35)

Now the proof of Lemma 27.10 is via excluding all possible locations in Aq,ψ for the image h(q) of a potential sub-
homomorphism h : q→ Ia . As explained above, by (34), Lemmas 27.3 and 27.7, only the cases (1)c –(6)c in Fig. 9 remain for 
the location of h(q), and we need to show that none of them is possible. In light of (H2), we always track the location of 
h( f1) and, whenever possible, try to reduce the cases to cases in the proof of Lemma 27.7 for bikes:

(1)c h(q) starts in W1 and h(v1) ≺h(q) vc
1.

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

Then h(q) definitely properly intersects the c-neighbourhood of W1, and it might also properly intersect the 
c-neighbourhoods of W2 or W3. It follows from h(v1) ≺h(q) vc

1 that if h( f1) is in cq then h( f1) ≺cq
c f1. We can 

exclude all possible locations for h( f1) by the same argument as in case (1)T in the proof of Lemma 27.7, with the 
c-neighbourhood of W1 in place of the T-neighbourhood of W• .

(2)c h(q) starts in cq and ends in W1.

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)

Then h(q) properly intersects the c-neighbourhood of W1 only. We can exclude all possible locations for h( f1)

by the same argument as in case (2)T in the proof of Lemma 27.7, with the c-neighbourhood of W1 in place of the 
T-neighbourhood of W• .

(3)c h(q) starts in W2 and h(v2) �h(q) vc
2.

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

Then h(q) definitely properly intersects the c-neighbourhood of W2, and it may also properly intersect the c-
neighbourhood of W3. We consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then v2 = f1, and so h( f1) �h(q)
c f1 = vc

2. As 2f x2−k = 2 f x2−k
2 for all k ≤ |q|, h( f1) = 2 f x2−k

1 cannot hold 
for any such k, otherwise both h(t) and h( f2) are contacts of W2 for the T -node t with 2t x2−k = 2t x2−k , contradicting 
(35). Since the only F -node preceding f2 in q is f1, the only remaining option for h( f1) is when h( f1) = 2 f x2−k

2 is a 
contact of W2 for some k ≤ |q|. Now we track the location of h(t1). We have

δh(q)

(
h(t1),

2 f x2−k
2

)= δh(q)

(
h(t1),h( f1)

)= δ(t1, f1)= δ(y, f2)= δ2q x2−k

(2yx2−k, 2 f x2−k
2

)
, (36)

where y is the node in q with y ≺ f2 and δ(y, f2) = δ(t1, f1). Consider two cases, depending on whether y is a 
T -node or not:

– If y is a T -node t� , then 2t x2−k = 2t x2−k� , and so h(t1) = 2t x2−k by (36). Thus, h(t1) is a contact, contradicting (35)
and the fact that h( f1) is also a contact of W2.

– If y is not a T -node t� then 2t x2−k = 2t x2−k
1 . While y � f1 and f1 ≺ y are both possible, we surely have t1 ≺ y, as 

δ(y, f2) = δ(t1, f1) < δ(t1, f2). Then h(t1) = 2yx2−k follows by (36). But 2yx2−k is not a T -node.

If tlast ≺ f1 then v2 = tlast . If follows from h(v2) �h(q) vc
2 that if h( f1) is in cq then h( f1) �cq

c f1. As there is no 
F -node preceding c f1 in cq, either h( f1) is in W2, or h( f1) = c f1. We can exclude all possible locations for h( f1) by 
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the same argument as in case (3)T in the proof of Lemma 27.7, with the c-neighbourhood of W2 in place of the 
T-neighbourhood of W◦ .

(4)c h(q) ends in W2 and vc
2 �h(q) h(v2).

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

Then h(q) definitely properly intersects the c-neighbourhood of W2, and it might also properly intersect the c-
neighbourhood of W1. We consider the two cases f1 ≺ tlast and tlast ≺ f1:

If f1 ≺ tlast then v2 = f1, and so vc
2 = c f1 �h(q) h( f1) and h( f1) is in W2. We can exclude all possible locations for 

h( f1) by the same argument as in case (2)F in the proof of Lemma 27.7, with the c-neighbourhood of W2 in place of 
the F -neighbourhood of W• .

If tlast ≺ f1 then v2 = tlast . As by our assumption h(q) ends in W2 and vc
2 �h(q) h(v2), if follows that vc

2 �h(q)

h(tlast) ≺h(q) h( f1). We can exclude all possible locations for h( f1) by the same argument as in case (4)T in the proof 
of Lemma 27.7, with the c-neighbourhood of W2 in place of the T-neighbourhood of W◦ .

(5)c h(q) starts in W3.

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)

Then h(q) properly intersects the c-neighbourhood of W3 only. We have h(v3) �h(q) vc
3, as otherwise there is no 

room for h(q) in cq. As v3 = f2, we have h( f1) ≺h(q) h( f2) �h(q) vc
3 and h( f1) is in W3. We can exclude all possible 

locations for h( f1) by the same argument as in case (1)F in the proof of Lemma 27.7, with the c-neighbourhood of 
W3 in place of the F -neighbourhood of W• .

(6)c h(q) ends in W3 and vc
3 ≺h(q) h(v3).

vc
1 vc

2 vc
3

cq

W1 W2 W3

h(q)
. . .

Then h(q) definitely properly intersects the c-neighbourhood of W3, and it may also properly intersect the 
c-neighbourhood of W1 or W2. As v3 = f2, we have c f2 = vc

3 ≺h(q) h( f2). Therefore, if h( f1) is in cq then c f1 ≺ cq h( f1). 
As vc

2 � cq
c f1 and there is no F -node between c f1 and c f2 in cq, it follows that vc

3 �h(q) h( f1) and h( f1) is in W3. We 
can exclude all possible locations for h( f1) by the same argument as in case (2)F in the proof of Lemma 27.7, with 
the c-neighbourhood of W3 in place of the F -neighbourhood of W• .

We excluded all possible locations in Aq,ψ for the image h(q) of a potential subhomomorphism h : q→ Ia , which completes 
the proof of Lemma 27.10. �

To complete the proof of Theorem 27, given a 3CNF ψ with nψ clauses, we set n = (nψ + 2)(2|q| + 1) and take some 
(ψ, n)-gadget Aq,ψ satisfying the conditions of Lemma 27.10. By Lemmas 27.8 and 27.10, we then obtain: covA, Aq,ψ �|= q
iff ψ is satisfiable.

7. Conclusion

This article contributes to the non-uniform approach to ontology-based data access, which—broadly conceived—also in-
cludes optimisation of datalog and disjunctive datalog programs. There are three distinctive directions of research in this 
area (for detailed references, see Section 1.3):

(I) Finding general automata-theoretic, model-theoretic or algebraic characterisations of OMQs with a given data com-
plexity or rewritability type and investigating the computational complexity of checking those characterisations. As it 
turned out, for many standard DL ontology languages and monadic (disjunctive) datalog programs, the complexity of 
deciding FO- and datalog-rewritability ranges between ExpTime and 3ExpTime.

(II) Designing practical (possibly incomplete) rewriting and approximation algorithms. For example, the algorithm 
from [28] either successfully rewrites a given disjunctive datalog program into an equivalent plain datalog program or 
fails to decide whether the input is datalog rewritable or not.

(III) Obtaining explicit classifications of ‘natural’ restricted families of OMQs such as, for instance, binary chain datalog 
sirups [47]. Apart from supplementing (II), results in this direction help pinpoint key sources of the high complexity in
(I) and thereby identify interesting and better behaved classes of OMQs, as well as develop fine methods of establishing 
data complexity bounds for OMQ answering.
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This article contributes to directions (I) and (III). We introduce two classes of rudimentary OMQs, called d- and dd-sirups, 
and show that they capture many difficulties of both general OMQs with a disjunctive DL ontology and general monadic 
(plain and disjunctive) datalog queries. Indeed, the syntactically very simple and seemingly inexpressive d-sirups reveal 
rather complex and unexpected behaviour: (i) answering them is �p

2 -complete for combined complexity and requires find-
ing exponential-size resolution proofs in general; (ii) deciding their FO-rewritability turns out to be 2ExpTime-hard [44]—as 
hard as deciding FO-rewritability of arbitrary monadic datalog queries—with (iii) nonrecursive datalog, positive existential, 
and UCQ rewritings being of at least single-, double- and triple-exponential size in the worst case, respectively. Thus, un-
derstanding the behaviour of d-sirups is challenging yet fundamental for developing OBDA with expressive ontologies (note 
that d-sirups also constitute a new interesting class of CSPs).

The proofs of the ‘negative’ results mentioned above point to two ‘culprits’: possibly intersecting classes F and T in 
the covering axiom F (x) ∨ T (x) ← A(x), and multiple binary relations between the same pair of variables in a query. We 
demonstrate that elimination of these culprits can lead to non-trivial OMQ classes that admit complete explicit classifica-
tions, though may need the development of new methods and quite tricky, laborious proofs. Our main achievement here 
is an explicit AC

0 / NL/ P/ coNP-tetrachotomy of path-shaped dd-sirups (with disjoint F and T ), which required new tech-
niques for establishing membership in NL and for proving P- and especially coNP-hardness. (Incidentally, the bike technique 
for proving coNP-hardness shows that the algorithm from [28] mentioned in (II) is complete for path-shaped dd-sirups.) We 
believe that these techniques can also be used for wider classes of OMQs, which is witnessed by the AC

0 / L / NL-hardness 
trichotomy of ditree-shaped dd-sirups in [44].

7.1. Next steps

Interesting and challenging problems arising from our research are abundant; here are some of them.

1. Find complete explicit classifications of the following families of OMQs: (i) d-sirups with path CQs (that may contain 
F T -twins), (ii) undirected path-shaped, (iii) ditree- and (iv) undirected tree-shaped dd- and d-sirups. Also, consider 
(d)d-sirups (cov�, q) and (cov⊥�, q) with total covering ∀x (F (x) ∨ T (x)).

2. Settle the tight complexity of deciding FO- and other types of rewritability for arbitrary (i) d-sirups and (ii) dd-sirups. 
We conjecture that (i) is harder than (ii) in general.

3. Identify the complexity of deciding FO- and other types of rewritability to ontologies in (i) Schema .org and (ii) DL-Litekrom
and DL-Litebool [67]. Ontologies in (i) allow multiple disjunctions (and so covering by any number of classes); those in 
(ii) allow restricted existential quantification on the right-hand side of implications.

4. Analyse the size of FO-rewritings for OMQs with disjunctive axioms (starting with d- and dd-sirups). Could FO-rewritings 
be substantially more succinct than NDL- and PE-rewritings (cf. [96, Theorem 6.1])? (Note that the succinctness problem 
for OMQ rewritings is closely related to circuit complexity [95,50].)

5. Consider the (data complexity) and (rewritability) problems for d- and dd-sirups with multiple answer variables (which 
could lead to simpler classifications as indicated by [51]).

6. Investigate interconnections between (d)d-sirups and CSPs (starting from those in [30,36]) with the aim of transferring 
results from one formalism to the other.

7. Using the techniques developed in this article for establishing lower data complexity bounds, identify classes of OMQs 
for which rewriting algorithms such as the ones in [38,28] are complete.
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